Protective Effect of Ginsenosides Rg1 and Rb1 Against Intestinal Epithelial Barrier Injury Induced by Lipopolysaccharide in Vitro
10.13422/j.cnki.syfjx.20220705
- VernacularTitle:人参皂苷Rg1、Rb1对脂多糖体外诱导肠上皮屏障损伤的保护作用
- Author:
Tian CHEN
1
;
Bo-ye LI
1
;
Bo-yang YU
1
;
Jin-ning YANG
1
;
Qin HU
1
;
Ying CHEN
2
Author Information
1. Faculty of Environment and Life,Beijing University of Technology,Beijing 100124,China
2. Institute of Chinese Materia Medica,China Academy of Chinese Medical Sciences,Beijing 100700,China
- Publication Type:Journal Article
- Keywords:
ginsenoside Rg1;
ginsenoside Rb1;
inflammatory cytokines;
tight junction protein;
microfluidic cell culture chip
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2022;28(7):64-72
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo investigate the effects of ginsenoside Rg1 and ginsenoside Rb1 on the release of inflammatory factors of human myeloid leukemia monocytes (THP-1) induced by lipopolysaccharide (LPS) and their protective effects on the inflammatory injury of intestinal epithelial cells (Caco-2) induced by THP-1 cell activation based on the co-culture system of THP-1 and Caco-2. MethodFirstly,the microfluidic chip of co-culture of THP-1 and Caco-2 cells was prepared. In the experiment, a blank group, an LPS group, and drug intervention groups were set up.The cells in the blank group were cultured conventionally. In the LPS group,LPS (1 mg·L-1) was added to the lower THP-1 cells after the upper Caco-2 cells formed a monolayer barrier. On the basis of the LPS group, 33 mg·L-1 ginsenoside Rg1 and 33 mg·L-1 ginsenoside Rb1 were added to THP-1 cells respectively. After the co-culture of THP-1 cells and Caco-2 cells for 24 hours, the fluorescein isothiocyanate (FITC)-Dextran fluorescence value in the lower chip channel was detected by FITC-Dextran tracer method. A blank group, an LPS group,and drug intervention groups were set up in the THP-1 cell experiment. THP-1 cells in the blank group were cultured conventionally. In the LPS group, LPS (1 mg·L-1) was added to THP-1 cells.Ginsenoside Rg1 and ginsenoside Rb1 of the corresponding doses (11,33,100 mg·L-1) were added to the drug intervention groups respectively on the basis of the LSP group. After 24 hours of cell culture, the activity of THP-1 cells was detected by cell counting kit-8 (CCK-8). Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect the expression of inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor (TNF)-α of THP-1 cells. A blank group, an LPS group, and drug intervention groups were set up in the Caco-2 cell experiment. Caco-2 cells in the blank group were cultured conventionally, and in other groups, the corresponding cell supernatant in the second part of the THP-1 cell experiment was employed in Caco-2 cells. After 24 hours of cell culture,the activity of Caco-2 cells was detected by CCK-8. Real-time PCR was used to detect the expression of IL-6,interleukin-8 (IL-8), TNF-α, and Occludin of Caco-2 cells. The expression of tight junction protein Occludin in Caco-2 cells was detected by Western blot. ResultBoth ginsenoside Rg1 and ginsenoside Rb1 could effectively protect LPS-induced intestinal epithelial barrier permeability in the co-culture system of THP-1 and Caco-2 cells (P<0.01). Ginsenosides Rg1 and Rb1 antagonized LPS-induced increased expression of IL-6,IL-1β, and TNF-α in THP-1 cells (P<0.05). When the supernatant of THP-1 cells treated with ginsenosides Rg1 and Rb1 was co-cultured with Caco-2 cells, the expression of IL-6,IL-8, and TNF-α in Caco-2 cells was significantly reduced (P<0.01), and the expression of tight junction protein Occludin was up-regulated. ConclusionIn the co-culture system of THP-1 and Caco-2 cells simulating the intestinal epithelial barrier function in vitro,ginsenosides Rg1 and Rb1 play a protective role against LPS-induced intestinal epithelial barrier injury by regulating the release of inflammatory cytokines by THP-1 cells, thereby regulating the inflammatory response and cell barrier integrity of Caco-2 cells.