Mechanism of Yizhi Qingxin Prescription in Regulating PKA/CaN Pathway to Improve Cognitive Function in Alzheimer's Disease Model Mice
10.13422/j.cnki.syfjx.20252009
- VernacularTitle:益智清心方调控PKA/CaN通路改善阿尔茨海默病模型小鼠认知功能的机制
- Author:
Xiaochen GUO
1
;
Jiangang LIU
1
;
Dandan SHI
1
;
Ziqi NING
1
;
Yaoyao ZHANG
1
;
Fang LIU
1
;
Meixia LIU
1
Author Information
1. Xiyuan Hospital,China Academy of Chinese Medical Sciences,Beijing 100091,China
- Publication Type:Journal Article
- Keywords:
Alzheimer's disease;
Yizhi Qingxin prescription;
protein kinase A (PKA)/calcineurin (GaN) signaling pathway;
Ca2+ homeostasis;
mitochondrial dynamics
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2026;32(3):97-108
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo explore the mechanism by which Yizhi Qingxin prescription improves mitochondrial dysfunction in Alzheimer's disease (AD) through regulating mitochondrial Ca2+ homeostasis and kinetic balance based on the protein kinase A (PKA)/calcineurin (CaN) signaling pathway. MethodsSixty three-month-old amyloid precursor protein (APP)/presenilin 1 (PS1) double transgenic mice were randomly divided into a model group, a donepezil group(0.65 mg·kg-1), a low-dose Yizhi Qingxin prescription group (YQF-L,2.6 g·kg-1), a medium-dose Yizhi Qingxin prescription group (YQF-M,5.2 g·kg-1), and a high-dose Yizhi Qingxin prescription group (YQF-H,10.4 g·kg-1), with 12 mice in each group. Twelve C57BL/6J mice with the same genetic background served as a normal group. Each treatment group received gavage administration daily, with the model and normal groups receiving equal volume of physiological saline. Intervention continued for 12 consecutive weeks. The learning and memory abilities of the mice were assessed using the novel object recognition (NOR) and Morris water maze (MWM) tests. Hematoxylin-eosin (HE)/Nissl staining was used to observe histopathological changes in the hippocampus. Transmission electron microscopy (TEM) was used to observe mitochondrial ultrastructure. Fluo-4 acetoxymethyl ester (Fluo-4 AM) Ca2+ probe was used to measure intracellular Ca2+ concentration in brain tissue. Western blot was used to determine the protein expression of PKA, CaN, sodium/calcium/lithium exchanger (NCLX), mitochondrial calcium uniporter (MCU), calmodulin (CaM), dynamin-related protein 1 (Drp1), and phosphorylated dynamin-related protein 1 (serine 637 site) [p-Drp1(S637)] in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to measure the expression of PKA, CaN, CaM, NCLX, MCU, and Drp1 mRNAs. ResultsCompared with those in the normal group, the recognition index (RI) of the model group decreased (P0.01), and the number of crossings through the original platform area, the duration of stay in the target quadrant, and the distance were reduced (P0.01). The protein expression of PKA, NCLX, and p-DRP1 (ser637) significantly decreased (P0.05), and the mRNA expression of PKA and NCLX significantly decreased (P0.05). The escape latency (EL) was prolonged (P0.05), and the intracellular Ca2+ level significantly increased (P0.01). The protein expression of CaN, CaM, MCU, and Drp1, as well as the mRNA expression of CaN, MCU, and Drp1, significantly increased (P0.05). After intervention with Donepezil and Yizhi Qingxin prescription, compared with that in the model group, the RI of the treatment group significantly increased (P0.05), and the number of crossings through the platform and the duration of stay in the target quadrant significantly increased (P0.05). The protein expression of PKA, NCLX, and p-Drp1 (ser637) and the mRNA expression of PKA and NCLX significantly increased (P0.05). On the 4th and 5th days, the EL was shortened (P0.05), and the intracellular Ca2+ level decreased (P0.05). The protein expression of CaN, CaM, MCU, and Drp1 and the mRNA expression of CaN, MCU, and Drp1 significantly decreased (P0.05). ConclusionYizhi Qingxin prescription regulates the PKA/CaN pathway, upregulates the expression of PKA, NCLX, and p-Drp1 (ser637) proteins, reduces the expression of CaN, CaM, MCU, and Drp1 proteins, and regulates Ca2+ homeostasis and mitochondrial dynamic balance, thereby enhancing the spatial learning and memory abilities of AD mice.