Mechanism prediction and experimental verification of Maxing Shigan Decoction against influenza A virus infection based on UPLC-MS/MS and network pharmacology
10.1016/j.dcmed.2025.12.008
- Author:
Jiawang HUANG
;
Jianing SHI
;
Yang LIU
;
Zhiying FENG
;
Jingmin FU
;
Siyu WANG
;
Xuan JI
;
Rong YU
;
Ling LI
- Publication Type:Journal Article
- Keywords:
Influenza A virus;
Maxing Shigan Decoction;
UPLC-MS/MS;
Network pharmacology;
Hypoxia inducible factor (HIF)-1 signaling pathway
- From:
Digital Chinese Medicine
2025;8(4):532-542
- CountryChina
- Language:English
-
Abstract:
Objective:To investigate the chemical compositions of Maxing Shigan Decoction (麻杏石甘汤, MXSGD) and elucidate its anti-influenza A virus (IAV) mechanism from prediction to validation.
Methods: Ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to analyze the chemical compositions of MXSGD. Network pharmacology theories were used to screen and identify shared targets of both the potential targets of active ingredients of MXSGD and IAV. A protein-protein interaction (PPI) network was then constructed, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The binding stability between core bioactive compounds and key targets was validated by molecular docking and dynamic simulations. A total of 24 BALB/c mice were infected with IAV to build IAV mouse models. After successful modelling, the mouse models were randomly divided into model, MXSGD high-dose (2.8 g/kg), MXSGD low-dose (1.4 g/kg), and oseltamivir (20.14 mg/kg) groups, with an additional normal mice as control group (n = 6 per group). The treatments were administered by gavage daily between 8:00 a.m. and 10:00 a.m. for five consecutive days. Upon completion of the administration, the body weight ratio, lung index, protein content in the bronchoalveolar lavage fluid (BALF), and the levels of inflammatory factors including interleukin (IL)-6 and tumor necrosis factor (TNF)-α in mice were measured to preliminarily analyze the therapeutic efficacy of MXSGD against IAV infection. Furthermore, the expression levels of mechanistic target of rapamycin (mTOR), hypoxia inducible factor (HIF)-1α, and vascular endothelial growth factor (VEGF) proteins in the HIF-1 signaling pathway, which was enriched by network pharmacology, were detected by Western blot.
Results:A total of 212 chemical components in MXSGD were identified by the UPLC-MS/MS method. These chemical components can be classified into 9 primary categories and 31 secondary categories. After intersecting the chemical component targets with IAV-related targets, a total of 567 potential MXSGD components targeting IAV were identified. The construction of PPI network and the results of both GO and KEGG enrichment analyses revealed that the anti-IAV effects of MXSGD were associated with multiple pathways, including apoptosis, TNF, HIF-1, and IL-17 signaling pathways. The results of molecular docking demonstrated that the binding energies between the core compound 1-methoxyphaseollin and key targets including HIF-1α, mTOR, and VEGF were all lower than – 5.0 kcal/mol. Furthermore, molecular dynamics simulations confirmed the structural stability of the resulting complexes. Animal experiments showed that compared with the normal controls, IAV-infected mice showed significantly reduced body weight ratio, markedly increased lung index, protein content in BALF, and the levels of inflammatory factors such as IL-6 and TNF-α (P < 0.01), thereby causing damage to the lung tissue; consequently, the expression levels of mTOR, HIF-1α, and VEGF proteins in the lung tissues of these mice were significantly elevated (P < 0.01). However, after MXSGD treatment, the mouse models presented a significant increase in body weight ratio, as well as marked decreases in lung index, protein content in BALF, and the levels of inflammatory factors including IL-6 and TNF-α (P < 0.01). Furthermore, the therapy alleviated IAV-induced injuries and significantly downregulated the expression levels of mTOR, HIF-1α, and VEGF proteins in lung tissues (P < 0.01 or P < 0.05).
Conclusion:MXSGD exerts anti-IAV effects through multi-component, multi-target, and multi-pathway synergism. Among them, 1-methoxyphaseollin is identified as a potential key component, which alleviates virus-induced lung injury and inflammatory response via the regulation of HIF-1 signaling pathway, providing experimental evidence for the clinical application of MXSGD.