- Author:
Qianwen WANG
1
;
Ruohan JIA
1
;
Xue MO
1
;
Wen CHEN
1
Author Information
- Publication Type:Journal Article
- Keywords: glucose transporters; membrane proteins; nanodisc self-assembly technology; nanodisc-protein complex
- MeSH: Nanostructures/chemistry*; Glucose Transporter Type 1/biosynthesis*; Humans; Animals; Phospholipids/chemistry*; Detergents/chemistry*
- From: Chinese Journal of Biotechnology 2025;41(8):3178-3186
- CountryChina
- Language:Chinese
- Abstract: Glucose transporters (GLUTs) are pivotal membrane proteins that facilitate the passive transport of glucose into cells. However, their aberrant overexpression is closely linked to the Warburg effect and chemotherapy resistance of tumors. GLUTs are complex multi-pass transmembrane proteins that require detergents for extraction from the cell membrane during preparation. The persistent presence of detergents in the sample can disrupt lipid-protein interactions, potentially leading to conformational distortion and functional losses of GLUTs, severely hindering the research into their structures and transport mechanisms. To eliminate detergent interference and preserve its authentic conformation, this study employs nanodisc technology and utilizes the self-assembly of the membrane scaffold protein MSP1E3D1 and phospholipids to produce a biomimetic membrane environment, thereby overcoming the limitations of conventional methods. The C-terminal His10-tagged GLUT1 was heterologously expressed in the insect cell Sf9/Bac-to-Bac system, and the GLUT1-nanodisc complex was obtained after detergent solubilization, affinity chromatography purification via anti-His antibody resin, and self-assembly. The successfully reconstituted nanodisc complex was further purified by Ni-NTA affinity chromatography. Nanodisc reconstitution produced monodisperse GLUT1 particles that retained native secondary structure, as confirmed by far-UV circular dichroism (CD) spectroscopy and dynamic light scattering (DLS). Unlike conventional detergent micelles, which lack a true lipid bilayer, distort transmembrane-helix topology, and occlude ligand-binding sites, the nanodisc platform embeds GLUT1 in a phospholipid bilayer that preserves its authentic conformation while eliminating detergent interference. The resulting GLUT1-nanodisc complex is therefore a superior scaffold for high-resolution cryo-EM structural analysis, permitting detailed interrogation of the transporter's conformational cycle, its interactions with partner proteins, and downstream structure-guided, high-throughput drug screening.

