Biocompatibility of 3D printed biodegradable WE43 magnesium alloy scaffolds and treatment of bone defects.
- Author:
Shuyuan MIN
1
;
Yun TIAN
1
Author Information
1. Department of Orthopedics, Peking University Third Hospital; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China.
- Publication Type:Journal Article
- Keywords:
3D printing;
Biodegradable implants;
Bone defect;
Bone graft;
Magnesium alloy
- MeSH:
Animals;
Rabbits;
Printing, Three-Dimensional;
Alloys/chemistry*;
Tissue Scaffolds/chemistry*;
Magnesium/chemistry*;
Rats, Sprague-Dawley;
Biocompatible Materials;
Mesenchymal Stem Cells/cytology*;
Femur/surgery*;
Rats;
Absorbable Implants;
Male;
Bone Regeneration;
Tissue Engineering/methods*;
Cells, Cultured
- From:
Journal of Peking University(Health Sciences)
2025;57(2):309-316
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE:To investigate the biocompatibility of porous WE43 magnesium alloy scaffolds manufactured by 3D printing technology and to observe its effect in treating femoral defects in New Zealand white rabbits.
METHODS:In vitro cytotoxicity test was performed using bone marrow mesenchymal stem cells from Sprague Dawley (S-D) rats. According to the different culture media, the cells were divided into 100% extract group, 50% extract group, 10% extract group and control group. After culturing for 1, 3 and 7 days, the cell activity of each group was determined by cell counting kit-8 (CCK-8). In the in vivo experiment, 3.0-3.5 kg New Zealand white rabbits were randomly divided into three groups: Experimental group, bone cement group and blank group, with 9 rabbits in each group. Each rabbit underwent surgery on the left lateral femoral condyle, and a bone defect with a diameter of 5 mm and a depth of 6 mm was created using a bone drill. The experimental group was implanted with WE43 magnesium alloy scaffolds, the bone cement group was implanted with calcium sulfate bone cement, and the blank group was not implanted. Then 4, 8 and 12 weeks after surgery, 3 rabbits in each group were euthanized by carbon dioxide anesthesia, and the femur and important internal organs were sampled. Micro-computed tomography (Micro-CT) scanning was performed on the left lateral femoral condyle. Sections of important internal organs were prepared and stained with hematoxylin-eosin (HE). Hard tissue sections were made from the left lateral femoral condyle and stained with methylene blue acid fuchsin and observed under a microscope.
RESULTS:In the cytotoxicity test, the cell survival rate in the 100% extract group was higher than that in the control group (140.56% vs. 100.00%, P < 0.05) on 1 day of culture; there was no statistically significant difference (P>0.05) in cell survival rate among the groups on 3 days of culture; the cell survival rate in the 100% extract group was lower than that in the control group (68.64% vs. 100.00%, P < 0.05) on 7 days of culture. Micro-CT scanning in the in vivo experiment found that most of the scaffolds in the experimental group had been degraded in 4 weeks, with very few high-density scaffolds remaining. In 12 weeks, there was no obvious stent outline. In 4 weeks, a certain amount of gas was generated around the WE43 magnesium alloy scaffold, and the gas was significantly reduced from 8 to 12 weeks. Hard tissue sections showed that a certain amount of extracellular matrix and osteoid were generated around the scaffolds in the experimental group in 4 weeks. In the bone cement group, most of the calcium sulfate bone cement had been degraded. In 8 weeks, the osteoid around the scaffold and its degradation products in the experimental group increased significantly. In 12 weeks, new bone was in contact with the scaffold around the scaffold in the experimental group. There was less new bone in the bone cement group and the blank group.
CONCLUSION:The porous WE43 magnesium alloy scaffold fabricated by 3D printing process has good biocompatibility and good osteogenic properties, and has the potential to become a new material for repairing bone defects.