Effect of CMTM6 on PD-L1 in Helicobacter pylori infected gastric epithelial cells.
- Author:
Wei FU
1
;
Jing NING
1
;
Weiwei FU
1
;
Jing ZHANG
1
;
Shigang DING
1
Author Information
1. Department of Gastroenterology, Peking University Third Hospital; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China.
- Publication Type:Journal Article
- Keywords:
B7-H1 antigen (PD-L1);
Epithelial cells;
Gastric mucosa;
Helicobacter pylori;
MARVEL domain-containing proteins (CMTM6)
- MeSH:
Humans;
MARVEL Domain-Containing Proteins/metabolism*;
Helicobacter pylori/physiology*;
B7-H1 Antigen/genetics*;
Helicobacter Infections/metabolism*;
Epithelial Cells/metabolism*;
Gastric Mucosa/metabolism*;
Chemokines/metabolism*;
Cell Line;
Gene Knockout Techniques;
Myelin Proteins
- From:
Journal of Peking University(Health Sciences)
2025;57(2):245-252
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE:To explore the changes of CKLF-like MARVEL transmembrane domain-containing 6 (CMTM6) and programmed death-ligand 1 (PD-L1) expression in gastric mucosal epithelial cells after Helicobacter pylori infection and the regulation of CMTM6 on PD-L1, and to analyze the mRNA expression differences before and after CMTM6 gene knock-out in helicobacter pylori infected gastric epithelial cells by microarray analysis.
METHODS:The standard Helicobacter pylori strain ATCC 26695 was co-cultured with human gastric epithelial cell GES-1 for 6, 24 and 48 hours, and the mRNA and protein levels of CMTM6 and PD-L1 were detected by real-time quantitative PCR and Western blot. Using CRISPR/Cas9 to construct CMTM6 gene knockout plasmid and knockout CMTM6 gene of GES-1 cells. Helicobacter pylori was co-cultured with CMTM6 gene knockout and wild type GES-1 cells for 48 hours to detect PD-L1 transcription and protein level changes, and CMTM6 gene knockout GES-1 cells were treated with the proteasome inhibitor MG-132 to detect the changes in PD-L1 protein levels. Agilent Human ceRNA Microarray 2019 was used to detect the differentially expressed genes in CMTM6 gene knockout and wild-type GES-1 cells co-cultured with Hp for 48 hours, and the signal pathway of differentially expressed genes enrichment was analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
RESULTS:The mRNA and protein levels of CMTM6 and PD-L1 in GES-1 cells were significantly up-regulated after Helicobacter pylori infection, and CMTM6 mRNA was most significantly up-regulated 48 hours after infection. After CMTM6 gene knockout, the CD274 gene transcription level of Helicobacter pylori infected GES-1 cells did not change significantly, but PD-L1 protein level was significantly down-regulated, and the PD-L1 level increased after the application of proteasome inhibitor MG-132. After CMTM6 gene knockout, 67 genes had more than two times of differential expression. The transcription levels of TMEM68, FERMT3, GPR142, ATP6V1FNB, NOV, UBE2S and other genes were significantly down-regulated. The transcription levels of PCDHGA6, CAMKMT, PDIA2, NTRK3, SPOCK1 and other genes were significantly up-regulated. After CMTM6 gene knockout, ubiquitin-conjugating enzyme E2S (UBE2S) gene expression was significantly down-regulated, which might affect protein ubiquitination degradation. After CMTM6 gene knockout, adrenoceptor alpha 1B (ADRA1B), cholinergic receptor muscarinic 1 (M1), CHRM1, platelet activating factor receptor (PTAFR) gene expression was significantly up-regulated.
CONCLUSION:Helicobacter pylori infection up-regulates the expression level of CMTM6 in gastric mucosa cells, and CMTM6 can stabilize PD-L1 and maintain the protein level of PD-L1. CMTM6 gene knockout may affect biological behaviors such as protein ubiquitination and cell surface receptor expression.