Curcumin prevents the arsenic-induced neuroimmune injury through JAK2/STAT3 pathway.
- Author:
Zhu WANG
1
;
Jingwen ZHENG
2
;
Shuang YANG
2
;
Ji MENG
2
;
Yuanjun LI
2
;
Chen SUN
2
;
Xiaoxu DUAN
3
Author Information
1. Experimental Teaching Center Department, School of Public Health, Shenyang Medical College, Shenyang 110034, China.
2. Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, China.
3. Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, China. *Corresponding author, E-mail: duanxiaoxu@symc.edu.cn.
- Publication Type:Journal Article
- MeSH:
Animals;
Janus Kinase 2/genetics*;
STAT3 Transcription Factor/genetics*;
Female;
Curcumin/pharmacology*;
Signal Transduction/drug effects*;
Mice, Inbred C57BL;
Mice;
Arsenic/toxicity*
- From:
Chinese Journal of Cellular and Molecular Immunology
2024;40(12):1067-1074
- CountryChina
- Language:Chinese
-
Abstract:
Objective To investigate the protective effect of curcumin (Cur) against arsenic-induced neuroimmune toxicity and the underlying molecular mechanisms in vivo. Methods Eighty SPF female C57BL/6 mice were randomly assigned to four groups: a control group, an arsenic-treated group, a Cur-treated group and an arsenic+Cur group, with 20 mice in each group. The control group received distilled water; the arsenic-treated group was given 50 mg/L NaAsO2 in the drinking water; the Cur-treated group was gavaged with 200 mg/kg of curcumin for 45 days; and the arsenic+Cur group received distilled water and was gavaged with 200 mg/kg of curcumin. Y-maze and Morris water maze experiments were conducted to assess the learning and memory ability of the mice. Western blot analysis was used to detect protein levels of blood-brain barrier tight junction proteins zonula occludens protein 1(ZO-1) and claudin 5, T lymphocyte subpopulation CD4 and CD8, Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway-related molecules JAK2 and STAT3. Real-time PCR was used to assess the mRNA levels of CD4+ T lymphocyte subsets type 1 T helper (Th1), Th2, Th17 and regulatory T cells (Treg) transcription factors and cytokines in hippocampus. Results Compared with the control group, the arsenic-treated group showed a significantly decreased correct rate, increased latency to reach the platform on the third and fifth days, and reduced times of crossing the platform. The expression of ZO-1 and claudin 5 protein decreased significantly, and the protein levels of CD4 and CD8 were up-regulated. The mRNA levels of Th1, Th17, and Treg transcription factor T-box expressed in T cell(T-bet), retinoid-related orphan receptor gamma t(RORγt), and forkhead box protein 3(FOXP3) in the arsenic-treated group were decreased. Th1 and Th17 cytokines interferon γ(IFN-γ) and interleukin 17(IL-17) were markedly decreased. In contrast, the mRNA levels of the Th2 transcription factor GATA binding protein 3(GATA3) and cytokine IL-4 in arsenic-treated group were higher than those in the control group. Furthermore, the protein levels of phosphorylated JAK2 (p-JAK2) and phosphorylated STAT3 (p-STAT3) increased. Compared with the arsenic-treated group, the arsenic+Cur group demonstrated a significantly increased correct rate, decreased latency to reach the platform on the third and fifth days, and increased times of crossing the platform. The protein expression levels of ZO-1 and claudin 5 increased significantly, and the protein levels of CD4 and CD8 were down-regulated. The mRNA levels of Th2 transcription factor GATA3 and cytokine IL-4 were decreased. The mRNA levels of Th17 transcription factor RORγt and cytokine IL-17 were markedly increased. Furthermore, the protein levels of p-JAK2 and p-STAT3 decreased. Conclusion Through inhibiting the JAK2/STAT3 signaling pathway, curcumin could improve arsenic-induced decline in learning and memory abilities in mice, reverse the destruction of blood-brain barrier permeability of innate immune system components in arsenic-exposed mice, and antagonize arsenic-induced increase in the number of renal CD4 and CD8 molecule as well as the imbalance of CD4+ T lymphocyte subsets (Th1, Th2, Th17 and Treg), ultimately counteracting arsenic-induced neurotoxicity.