1.UPLC-Q-TOF-MS combined with network pharmacology reveals effect and mechanism of Gentianella turkestanorum total extract in ameliorating non-alcoholic steatohepatitis.
Wu DAI ; Dong-Xuan ZHENG ; Ruo-Yu GENG ; Li-Mei WEN ; Bo-Wei JU ; Qiang HOU ; Ya-Li GUO ; Xiang GAO ; Jun-Ping HU ; Jian-Hua YANG
China Journal of Chinese Materia Medica 2025;50(7):1938-1948
This study aims to reveal the effect and mechanism of Gentianella turkestanorum total extract(GTI) in ameliorating non-alcoholic steatohepatitis(NASH). UPLC-Q-TOF-MS was employed to identify the chemical components in GTI. SwissTarget-Prediction, GeneCards, OMIM, and TTD were utilized to screen the targets of GTI components and NASH. The common targets shared by GTI components and NASH were filtered through the STRING database and Cytoscape 3.9.0 to identify core targets, followed by GO and KEGG enrichment analysis. AutoDock was used for molecular docking of key components with core targets. A mouse model of NASH was established with a methionine-choline-deficient high-fat diet. A 4-week drug intervention was conducted, during which mouse weight was monitored, and the liver-to-brain ratio was measured at the end. Hematoxylin-eosin staining, Sirius red staining, and oil red O staining were employed to observe the pathological changes in the liver tissue. The levels of various biomarkers, including aspartate aminotransferase(AST), alanine aminotransferase(ALT), hydroxyproline(HYP), total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol(HDL-C), malondialdehyde(MDA), superoxide dismutase(SOD), and glutathione(GSH), in the serum and liver tissue were determined. RT-qPCR was conducted to measure the mRNA levels of interleukin 1β(IL-1β), interleukin 6(IL-6), tumor necrosis factor α(TNF-α), collagen type I α1 chain(COL1A1), and α-smooth muscle actin(α-SMA). Western blotting was conducted to determine the protein levels of IL-1β, IL-6, TNF-α, and potential drug targets identified through network pharmacology. UPLC-Q-TOF/MS identified 581 chemical components of GTI, and 534 targets of GTI and 1 157 targets of NASH were screened out. The topological analysis of the common targets shared by GTI and NASH identified core targets such as IL-1β, IL-6, protein kinase B(AKT), TNF, and peroxisome proliferator activated receptor gamma(PPARG). GO and KEGG analyses indicated that the ameliorating effect of GTI on NASH was related to inflammatory responses and the phosphoinositide 3-kinase(PI3K)/AKT pathway. The staining results demonstrated that GTI ameliorated hepatocyte vacuolation, swelling, ballooning, and lipid accumulation in NASH mice. Compared with the model group, high doses of GTI reduced the AST, ALT, HYP, TC, and TG levels(P<0.01) while increasing the HDL-C, SOD, and GSH levels(P<0.01). RT-qPCR results showed that GTI down-regulated the mRNA levels of IL-1β, IL-6, TNF-α, COL1A1, and α-SMA(P<0.01). Western blot results indicated that GTI down-regulated the protein levels of IL-1β, IL-6, TNF-α, phosphorylated PI3K(p-PI3K), phosphorylated AKT(p-AKT), phosphorylated inhibitor of nuclear factor kappa B alpha(p-IκBα), and nuclear factor kappa B(NF-κB)(P<0.01). In summary, GTI ameliorates inflammation, dyslipidemia, and oxidative stress associated with NASH by regulating the PI3K/AKT/NF-κB signaling pathway.
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Mice
;
Network Pharmacology
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Chromatography, High Pressure Liquid
;
Liver/metabolism*
;
Mice, Inbred C57BL
;
Humans
;
Mass Spectrometry
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Molecular Docking Simulation
2.Expression and Clinical Significance of CaMKIIγ in Patients with Acute Myeloid Leukemia.
Ming-Kai LIU ; Xu DAI ; Xiao-Ying ZHAO ; Wei-Wei ZHENG ; Ya-Jing MA
Journal of Experimental Hematology 2025;33(3):726-732
OBJECTIVE:
To investigate the expression and potential mechanism of calcium/calmodulin-dependent protein kinase II gamma (CaMKIIγ) in patients with acute myeloid leukemia (AML).
METHODS:
Peripheral blood samples were collected from 90 AML patients, and mononuclear cells were isolated. The expression of CaMKIIγ was measured using real-time quantitative PCR and Western blot. The diagnostic value of CaMKIIγ for AML was assessed, and its correlation with clinical characteristics was analyzed using the clinical data of patients. Additionally, the molecular mechanisms of CaMKIIγ were preliminarily explored.
RESULTS:
Compared with the control group, the expression of CaMKIIγ was significantly upregulated in AML patients. Receiver operating characteristic (ROC) curve analysis showed that CaMKIIγ could serve as a promising biomarker for distinguishing AML patients from healthy individuals. Furthermore, CaMKIIγ was significantly correlated with white blood cell (WBC) count and FLT3-ITD mutation. CaMKIIγ was highly expressed in both newly diagnosed and relapsed AML patients, while decreased during remission. In AML cell lines, the expression levels of CaMKIIγ were all elevated. Inhibition of phosphorylated CaMKIIγ by berbamine led to a decrease in pAKT and pSTAT5 expression.
CONCLUSION
CaMKIIγ is significantly upregulated in AML patients, and is associated with poor clinicopathological features and unfavorable prognosis. It may serve as a prognostic marker and potential therapeutic target in AML. Its expression may be related to the activation of pAKT and pSTAT5, suggesting that CaMKIIγ may contribute to the development and progression of AML through the activation of the AKT/STAT5 signaling pathway.
Humans
;
Leukemia, Myeloid, Acute/metabolism*
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism*
;
STAT5 Transcription Factor/metabolism*
;
Male
;
Female
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mutation
;
Middle Aged
;
Adult
;
Clinical Relevance
3.Glutamine signaling specifically activates c-Myc and Mcl-1 to facilitate cancer cell proliferation and survival.
Meng WANG ; Fu-Shen GUO ; Dai-Sen HOU ; Hui-Lu ZHANG ; Xiang-Tian CHEN ; Yan-Xin SHEN ; Zi-Fan GUO ; Zhi-Fang ZHENG ; Yu-Peng HU ; Pei-Zhun DU ; Chen-Ji WANG ; Yan LIN ; Yi-Yuan YUAN ; Shi-Min ZHAO ; Wei XU
Protein & Cell 2025;16(11):968-984
Glutamine provides carbon and nitrogen to support the proliferation of cancer cells. However, the precise reason why cancer cells are particularly dependent on glutamine remains unclear. In this study, we report that glutamine modulates the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) to promote cancer cell proliferation and survival. Specifically, lysine 604 (K604) in the sixth of the 7 substrate-recruiting WD repeats of FBW7 undergoes glutaminylation (Gln-K604) by glutaminyl tRNA synthetase. Gln-K604 inhibits SCFFBW7-mediated degradation of c-Myc and Mcl-1, enhances glutamine utilization, and stimulates nucleotide and DNA biosynthesis through the activation of c-Myc. Additionally, Gln-K604 promotes resistance to apoptosis by activating Mcl-1. In contrast, SIRT1 deglutaminylates Gln-K604, thereby reversing its effects. Cancer cells lacking Gln-K604 exhibit overexpression of c-Myc and Mcl-1 and display resistance to chemotherapy-induced apoptosis. Silencing both c-MYC and MCL-1 in these cells sensitizes them to chemotherapy. These findings indicate that the glutamine-mediated signal via Gln-K604 is a key driver of cancer progression and suggest potential strategies for targeted cancer therapies based on varying Gln-K604 status.
Glutamine/metabolism*
;
Myeloid Cell Leukemia Sequence 1 Protein/genetics*
;
Humans
;
Proto-Oncogene Proteins c-myc/genetics*
;
Cell Proliferation
;
Signal Transduction
;
Neoplasms/pathology*
;
F-Box-WD Repeat-Containing Protein 7/genetics*
;
Cell Survival
;
Cell Line, Tumor
;
Apoptosis
4.LocPro: A deep learning-based prediction of protein subcellular localization for promoting multi-directional pharmaceutical research.
Yintao ZHANG ; Lingyan ZHENG ; Nanxin YOU ; Wei HU ; Wanghao JIANG ; Mingkun LU ; Hangwei XU ; Haibin DAI ; Tingting FU ; Ying ZHOU
Journal of Pharmaceutical Analysis 2025;15(8):101255-101255
Drug development encompasses multiple processes, wherein protein subcellular localization is essential. It promotes target identification, treatment development, and the design of drug delivery systems. In this research, a deep learning framework called LocPro is presented for predicting protein subcellular localization. Specifically, LocPro is unique in (a) combining protein representations from the pre-trained large language model (LLM) ESM2 and the expert-driven tool PROFEAT, (b) implementing a hybrid deep neural network architecture that integrates convolutional neural network (CNN), fully connected (FC) layer, and bidirectional long short-term memory (BiLSTM) blocks, and (c) developing a multi-label framework for predicting protein subcellular localization at multiple granularity levels. Additionally, a dataset was curated and divided using a homology-based strategy for training and validation. Comparative analyses show that LocPro outperforms existing methods in sequence-based multi-label protein subcellular localization prediction. The practical utility of this framework is further demonstrated through case studies on drug target subcellular localization. All in all, LocPro serves as a valuable complement to existing protein localization prediction tools. The web server is freely accessible at https://idrblab.org/LocPro/.
5.Chlorogenic acid mitigates glucocorticoid-induced osteoporosis via modulation of HER2/AKT/mTOR signaling pathway.
An-Na XIE ; Sun-Zheng-Yuan ZHANG ; Yu ZHANG ; Jin-Long CAO ; Cheng-Long WANG ; Li-Bo WANG ; Hong-Jin WU ; Jie ZHANG ; Wei-Wei DAI
Journal of Integrative Medicine 2025;23(6):670-682
OBJECTIVE:
Glucocorticoid-induced osteoporosis (GIOP) is a common complication of prolonged glucocorticoid therapy. Chlorogenic acid (CGA), a polyphenol with antioxidant properties that is extracted from traditional Chinese medicines such as Eucommiae Cortex, has potential anti-osteoporotic activity. This study aimed to investigate the possible effects of CGA on GIOP in mice and murine long bone osteocyte Y4 (MLO-Y4) cells and explore the underlying molecular mechanisms.
METHODS:
The protective effects of CGA were initially evaluated in the GIOP mouse model induced by dexamethasone (Dex). The micro-computed tomography, hematoxylin-eosin staining, silver nitrate staining, and serum detection were used to assess the efficacy of CGA for improving bone formation in vivo. Then, network pharmacology analysis was used to predict the potential targets and molecular mechanisms underlying the therapeutic efficacy of CGA against GIOP. After that, 2',7'-dichlorofluorescein diacetate staining, flow cytometry, real-time quantitative reverse transcription polymerase chain reaction, and Western blotting were used to verify the mechanisms of CGA against GIOP in vitro.
RESULTS:
Animal experiments showed that CGA treatment effectively attenuated Dex-induced decreases in bone mass and strength and improved disrupted osteocyte morphology in mice. The protein-protein interaction analysis highlighted erb-b2 receptor tyrosine kinase (ERBB2), which is also known as human epidermal growth factor receptor 2 (HER2), caspase-3, kinase insert domain receptor, matrix metallopeptidase 9, matrix metallopeptidase 2, proto-oncogene tyrosine-protein kinase Src, and epidermal growth factor receptor as core targets. The Kyoto Encyclopedia of Genes and Genomes analysis revealed several significantly enriched pathways (P < 0.05), including the ERBB, phosphoinositide 3 kinase-AKT serine/threonine kinase 1 (AKT), and mechanistic target of rapamycin kinase (mTOR) pathways. Cellular experiments verified that CGA enhanced bone formation and promoted autophagy while inhibiting apoptosis in MLO-Y4 cells exposed to Dex, which was associated with the upregulated expression of HER2 and activation of the HER2/AKT/mTOR signaling pathway.
CONCLUSION
CGA exerted anti-osteoporotic effects against GIOP, partially through targeting osteocytes and modulating the HER2/AKT/mTOR signaling pathway. Please cite this article as: Xie AN, Zhang SZY, Zhang Y, Cao JL, Wang CL, Wang LB, Wu HJ, Zhang J, Dai WW. Chlorogenic acid mitigates glucocorticoid-induced osteoporosis via modulation of HER2/AKT/mTOR signaling pathway. J Integr Med. 2025; 23(6):670-682.
Animals
;
Chlorogenic Acid/therapeutic use*
;
Osteoporosis/metabolism*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Mice
;
Glucocorticoids/adverse effects*
;
Receptor, ErbB-2/metabolism*
;
Proto-Oncogene Mas
;
Dexamethasone/adverse effects*
;
Osteocytes/drug effects*
;
Osteogenesis/drug effects*
;
Male
;
Cell Line
;
Mice, Inbred C57BL
;
Humans
6.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
7.Interpretation of specification for service of cancer screening for workers
Hongda CHEN ; Bin LU ; Ying ZHENG ; Peng DU ; Xiao QI ; Kai ZHANG ; Yuying LIU ; Junli WEI ; Donghua WEI ; Jiyong GONG ; Yunchao HUANG ; Zhenya SONG ; Xi CHU ; Dong DONG ; Wenjing ZHENG ; Min DAI
Chinese Journal of Epidemiology 2024;45(4):486-489
As the backbone force of China's social and economic construction, the health status of workers is closely related to the nation's productivity and social development. Currently, cancers have become one of the major diseases threatening the health of workers. However, there are still many shortcomings in the cancer screening services for the workers. To standardize cancer screening services for workers, ensure the quality of screening services, and improve the overall screening effectiveness, 19 institutions, including Peking Union Medical College Hospital of the Chinese Academy of Medical Sciences, have jointly formulated the Group Standard "Specification for service of cancer screening for workers (T/CHAA 023-2023)". This standard follows the principles of "legality, scientific rigor, advancement, and feasibility" and combines the frontier scientific advances in cancer screening. It clarifies the relevant requirements for service principles, service design, service delivery, service management, service evaluation, and improving worker cancer screening. Implementing this group standard will help connect the common screening needs of workers, employers, and cancer screening service providers, standardize the screening process, improve screening quality, and ultimately increase the early diagnosis rate and survival rate of cancer patients. Consequently, this group standard will help safeguard workers' health rights and interests, ensure the labor force resources, promote the comprehensive coordinated and sustainable development of society, and contribute to realizing the "Healthy China 2030" strategic policy.
8.The value of urine protein kinase Y-linked gene promoter site methylation in early diagnosis of prostate cancer
Weifeng LIU ; Zheng DAI ; Yibin ZHOU ; Kaiwen FENG ; Kai WEI ; Gule SUN ; Dongrong YANG ; Jin ZHU
The Journal of Practical Medicine 2024;40(5):688-694
Objective To explore the clinical value of methylation at promoter sites of urine protein kinase Y-linked(PRKY)gene in the early diagnosis of prostate cancer(PCa).Methods Urine samples were collected from 50 suspected PCa patients.After extracting DNA,the methylation levels of the PRKY gene promoter sites cg05163709,cg08045599,and cg05618150 were detected using quantitative methylation-specific PCR(qMSP).Simultaneously,the patients were divided into the benign prostatic hyperplasia(BPH)group and the PCa group.The differences in clinical indicators between the two groups were analyzed,as well as the methylation status of the PRKY gene promoter sites in the urine of the two groups of patients.The receiver operating charac-teristic(ROC)curve of PRKY promoter sites methylation was established,and the area under the curve(AUC)was calculated to analyze the diagnostic value of PRKY promoter sites methylation in PCa,and to perform com-bined diagnosis with clinical indicators.Results The methylation rates of cg05163709 and cg05618150 in urine specimens of PCa patients were significantly higher than those of BPH patients.The AUC for cg05163709 methyla-tion in diagnosing PCa was 0.762,with a sensitivity of 86.70%.It showed better performance in early screening for PCa compared to total prostate specific antigen(tPSA),percentage free prostate specific antigen(f/tPSA)and prostate specific antigen density(PSAD)index.We found that the AUC for cg05618150 methylation in conjunc-tion with PSAD in diagnosing PCa was 0.787,with a sensitivity of 86.70%.The AUC of cg05163709 methylation and PSAD in the joint diagnosis of PCa was 0.855,and the specificity could reach 95.00%.Conclusion The methylation of urine PRKY gene promoter sites cg05163709 and cg05618150 shows high sensitivity and specificity in diagnosing PCa,making them promising biomarkers for early detection of PCa.
9.Analysis of epidemiological characteristics of risk factors for cardiovascular diseases and malignant tumors based on the Shanghai community elderly cohort
Ping LI ; Huiru JIANG ; Mengyue YE ; Yayu WANG ; Xiaoyu CHEN ; Ancai YUAN ; Wenjie XU ; Huimin DAI ; Xi CHEN ; Xiaoxiang YAN ; Shengxian TU ; Yuanqi ZHENG ; Wei ZHANG ; Jun PU
Journal of Shanghai Jiaotong University(Medical Science) 2024;44(5):617-625
Objective·To analyze the epidemiological characteristics of risk factors for cardiovascular diseases and malignant tumors based on the Shanghai community elderly cohort.Methods·The study subjects were selected from the Shanghai community elderly cohort established from February to August 2019,with a total of 17 948 people.The study subjects were divided into 4 groups according to self-reported presence or absence of tumors and/or cardiovascular diseases during the baseline survey:tumor-free and non-cardiovascular disease group,single cardiovascular disease group,single tumor group and tumor cardiovascular disease co-occurrence group.The differences among the four groups of subjects were collected and compared in terms of demographic characteristics and physiological indicators,daily living habits(smoking,drinking tea,drinking coffee,drinking carbonated drink,drinking alcohol,sedentary time,physical activity level and sleep quality),past medical history,psychological status(depression and anxiety)and dietary compliance.Results·Among the study subjects,60.1%of tumor patients were complicated with cardiovascular diseases.The differences among the four groups of subjects in age,gender,educational level,pre-retirement occupation,waist circumference,hip circumference and body mass index were statistically significant(all P<0.05).Compared with the tumor-free and non-cardiovascular disease group,the single cardiovascular disease group,single tumor group and tumor cardiovascular disease co-occurrence group all exhibited lower proportions of smoking and high physical activity levels(all P<0.05),and higher proportion of sedentary time exceeding 4 h/d and poor sleep quality(all P<0.05);the proportion of subjects with past medical histories including hyperlipidemia,peripheral vascular disease,endocrine system disease,respiratory system disease,urinary system disease and digestive system disease of the single cardiovascular disease group and the tumor cardiovascular disease co-occurrence group was higher(all P<0.05),and the proportion of subjects with depression and anxiety was also higher(all P<0.05).Furthermore,compared with the tumor-free and non-cardiovascular disease group,the single cardiovascular disease group had lower compliance rates of poultry,fish,fruit and liquid milk(all P<0.05).Among the four groups,only the compliance rate of vegetable intake exceeded 50%,while the compliance rates of poultry,fish,fruit,liquid milk and tubers were all below 20%.Conclusion·In the elderly population of Shanghai communities,over half of malignant tumor patients are concomitant with cardiovascular diseases.Unhealthy daily habits are prevalent among those with cardiovascular diseases,tumors and tumor-cardiovascular disease co-occurrence.The intake of many foods in the elderly of the community do not reach the levels recommended by Chinese Dietary Guidelines.
10.Efficacy and safety of chimeric antigen receptor T-cell therapy followed by allogeneic hematopoietic stem cell transplantation in 21 patients with Ph-like acute lymphoblastic leukemia
Haiping DAI ; Hongjie SHEN ; Zheng LI ; Wei CUI ; Qingya CUI ; Mengyun LI ; Sifan CHEN ; Mingqing ZHU ; Depei WU ; Xiaowen TANG
Chinese Journal of Hematology 2024;45(1):35-40
Objective:To evaluate the efficacy and safety of chimeric antigen receptor T-cell (CAR-T) therapy followed by allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with Ph-like acute lymphoblastic leukemia (Ph-ALL) .Methods:Patients with Ph-ALL who underwent CAR-T therapy followed by allo-HSCT from March 2018 to August 2023 at the First Affiliated Hospital of Soochow University were included, and their clinical data were retrospectively analyzed.Results:Of the 21 patients, 14 were male and 7 were female. The median age at the time of CAR-T therapy was 22 (6-50) years. Seven patients had ABL1-like rearrangements, and 14 had JAK-STAT rearrangements. Prior to CAR-T therapy, 12 patients experienced hematologic relapse; 7 were multiparameter flow cytometry minimal residual disease (MFC-MRD) -positive and 2 were MFC-MRD-negative. CAR-T cells were derived from patients’ autologous lymphocytes. Nine patients were treated with CD19 CAR-T cells, and 12 were treated with CD19/CD22 CAR-T cells. After assessment on day 28 after CAR-T therapy, 95.2% of the patients achieved complete remission, with an MRD-negative remission rate of 75%. Nineteen patients developed grade 0–2 cytokine release syndrome (CRS) and 2 patients suffered grade 3 CRS, all cases of which resolved after treatment. All patients underwent allo-HSCT after CAR-T therapy. The median time from CAR-T therapy to allo-HSCT was 63 (38-114) days. Five patients experienced relapse after CAR-T therapy, including four with hematologic relapse and one with molecular relapse. The 3-year overall survival (OS) rates in the ABL1 and JAK-STAT groups were (83.3±15.2) % and (66.6±17.2) %, respectively ( P=0.68) . The 3-year relapse-free survival (RFS) rates were (50.0±20.4) % and (55.6±15.4) % in the ABL1 and JAK-STAT groups, respectively. There was no significant difference in 3-year OS or RFS between the two groups. Conclusions:CAR-T therapy followed by allo-HSCT leads to rapid remission in most patients with Ph-ALL and prolongs leukemia-free survival.

Result Analysis
Print
Save
E-mail