1.Murine gammaherpesvirus-68 ORF38 encodes a tegument protein and is packaged into virions during secondary envelopment.
Sheng SHEN ; Haitao GUO ; Hongyu DENG
Protein & Cell 2014;5(2):141-150
Tegument is the unique structure of a herpesvirion which occupies the space between nucleocapsid and envelope. Accumulating data have indicated that interactions among tegument proteins play a key role in virion morphogenesis. Morphogenesis of gammaherpesviruses including Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) is poorly understood due to the lack of efficient de novo lytic replication in cell culture. Murine gammaherpesvirus-68 (MHV-68) is genetically related to these two human herpesviruses and serves as an effective model to study the lytic replication of gammaherpesviruses. We previously showed that ORF33 of MHV-68 encodes a tegument protein and plays an essential role in virion maturation in the cytoplasm. However, the molecular mechanism of how ORF33 participates in virion morphogenesis has not been elucidated. In this study we demonstrated that ORF38 of MHV-68 is also a tegument protein and is localized to cytoplasmic compartments during both transient transfection and viral infection. Immuno-gold labeling assay showed that ORF38 is only present on virions that have entered the cytoplasmic vesicles, indicating that ORF38 is packaged into virions during secondary envelopment. We further showed that ORF38 co-localizes with ORF33 during viral infection; therefore, the interaction between ORF38 and ORF33 is conserved among herpesviruses. Notably, we found that although ORF33 by itself is distributed in both the nucleus and the cytoplasm, in the presence of ORF38, ORF33 is co-localized to trans-Golgi network (TGN), a site where secondary envelopment takes place.
Animals
;
DNA Replication
;
genetics
;
Gammaherpesvirinae
;
genetics
;
pathogenicity
;
Humans
;
Mice
;
Viral Envelope Proteins
;
genetics
;
Viral Matrix Proteins
;
genetics
;
Virion
;
genetics
;
Virus Replication
;
trans-Golgi Network
;
genetics
2.The role of the exocyst in renal ciliogenesis, cystogenesis, tubulogenesis, and development
Kidney Research and Clinical Practice 2019;38(3):260-266
The exocyst is a highly conserved eight-subunit protein complex (EXOC1–8) involved in the targeting and docking of exocytic vesicles translocating from the trans-Golgi network to various sites in renal cells. EXOC5 is a central exocyst component because it connects EXOC6, bound to the vesicles exiting the trans-Golgi network via the small GTPase RAB8, to the rest of the exocyst complex at the plasma membrane. In the kidney, the exocyst complex is involved in primary ciliognesis, cystogenesis, and tubulogenesis. The exocyst, and its regulators, have also been found in urinary extracellular vesicles, and may be centrally involved in urocrine signaling and repair following acute kidney injury. The exocyst is centrally involved in the development of other organs, including the eye, ear, and heart. The exocyst is regulated by many different small GTPases of the RHO, RAL, RAB, and ARF families. The small GTPases, and their guanine nucleotide exchange factors and GTPase-activating proteins, likely give the exocyst specificity of function. The recent development of a floxed Exoc5 mouse line will aid researchers in studying the role of the exocyst in multiple cells and organ types by allowing for tissue-specific knockout, in conjunction with Cre-driver mouse lines.
Acute Kidney Injury
;
Animals
;
Cell Membrane
;
Ear
;
Exocytosis
;
Extracellular Vesicles
;
GTP Phosphohydrolases
;
GTPase-Activating Proteins
;
Guanine Nucleotide Exchange Factors
;
Heart
;
Humans
;
Kidney
;
Mice
;
Monomeric GTP-Binding Proteins
;
Sensitivity and Specificity
;
trans-Golgi Network
3.HID-1 is a peripheral membrane protein primarily associated with the medial- and trans- Golgi apparatus.
Lifen WANG ; Yi ZHAN ; Eli SONG ; Yong YU ; Yaming JIU ; Wen DU ; Jingze LU ; Pingsheng LIU ; Pingyong XU ; Tao XU
Protein & Cell 2011;2(1):74-85
Caenorhabditis elegans hid-1 gene was first identified in a screen for mutants with a high-temperature-induced dauer formation (Hid) phenotype. Despite the fact that the hid-1 gene encodes a novel protein (HID-1) which is highly conserved from Caenorhabditis elegans to mammals, the domain structure, subcellular localization, and exact function of HID-1 remain unknown. Previous studies and various bioinformatic softwares predicted that HID-1 contained many transmembrane domains but no known functional domain. In this study, we revealed that mammalian HID-1 localized to the medial- and trans- Golgi apparatus as well as the cytosol, and the localization was sensitive to brefeldin A treatment. Next, we demonstrated that HID-1 was a peripheral membrane protein and dynamically shuttled between the Golgi apparatus and the cytosol. Finally, we verified that a conserved N-terminal myristoylation site was required for HID-1 binding to the Golgi apparatus. We propose that HID-1 is probably involved in the intracellular trafficking within the Golgi region.
Animals
;
Brefeldin A
;
pharmacology
;
Cell Line, Tumor
;
Cytosol
;
drug effects
;
metabolism
;
Humans
;
Intracellular Space
;
drug effects
;
metabolism
;
Membrane Proteins
;
metabolism
;
Protein Transport
;
drug effects
;
Rats
;
Vesicular Transport Proteins
;
metabolism
;
trans-Golgi Network
;
drug effects
;
metabolism