1.Research on Tat peptide-polyethylene glycol modified gelatin-siloxane nanoparticles across the blood-brain barrier.
Xinhua TIAN ; Feng WEI ; Xiaoning LIN ; Wei FENG ; Peng WANG
Journal of Biomedical Engineering 2012;29(3):486-500
Gelatin-siloxane nanoparticles (GS NPs) have been considered to be good gene carrier candidate in vitro, since they have several advantages such as low toxicity, easy preparation and surface modification. In this study, the Tat-PEG-GS NPs were synthesized by the gelatin-siloxane, surface-modified with the polyethylene glycol (H2 N-PEG-COOH) and Tat peptide (KYGRRRQRRKKRGC) and thus constructed a delivery system which can cross BBB (Blood-brain barrier). The morphology, diameter, and zeta potential of Tat-PEG-GS NPs carrier system were characterized with transmission electron microscopy (TEM) and Nano-ZS zetasizer dynamic light scattering Detector. The organ distribution and dynamic evolution localized in the brain parenchyma of Tat-PEG-GS NPs in vivo was investigated with Cri in vivo imaging system and TEM. The obtained Tat-PEG-GS NPs were approximately spherical in shape with average particle size of 150-200 nm and zeta potentials of (32.27 +/- 2.47) mV. In vivo imaging results showed that the accumulation of Tat-PEG-GS NPs was higher in the brain than the accumulation of PEG-GS NPs, but the accumulation of Tat-PEG-GS NPs was lower in the liver than the accumulation of PEG-GS NPs. These differences are statistically significant. The nanocomplex could cross the BBB and reach the neural tissues tested with TEM. The Tat-PEG-GS NPs could cross the BBB and escape the arrest of the reticuloendothelial system (RES), and it would be potential nano-carrier systems for central delivery.
Animals
;
Blood-Brain Barrier
;
metabolism
;
Drug Delivery Systems
;
Female
;
Gelatin
;
administration & dosage
;
chemistry
;
pharmacokinetics
;
Male
;
Mice
;
Mice, Nude
;
Nanoparticles
;
chemistry
;
Peptide Fragments
;
chemistry
;
Polyethylene Glycols
;
chemistry
;
Siloxanes
;
administration & dosage
;
chemistry
;
pharmacokinetics
;
tat Gene Products, Human Immunodeficiency Virus
;
chemistry
2.Protective effects of transduced Tat-DJ-1 protein against oxidative stress and ischemic brain injury.
Hoon Jae JEONG ; Dae Won KIM ; Mi Jin KIM ; Su Jung WOO ; Hye Ri KIM ; So Mi KIM ; Hyo Sang JO ; Hyun Sook HWANG ; Duk Soo KIM ; Sung Woo CHO ; Moo Ho WON ; Kyu Hyung HAN ; Jinseu PARK ; Won Sik EUM ; Soo Young CHOI
Experimental & Molecular Medicine 2012;44(10):586-593
Reactive oxygen species (ROS) contribute to the development of a number of neuronal diseases including ischemia. DJ-1, also known to PARK7, plays an important role in transcriptional regulation, acting as molecular chaperone and antioxidant. In the present study, we investigated whether DJ-1 protein shows a protective effect against oxidative stress-induced neuronal cell death in vitro and in ischemic animal models in vivo. To explore DJ-1 protein's potential role in protecting against ischemic cell death, we constructed cell permeable Tat-DJ-1 fusion proteins. Tat-DJ-1 protein efficiently transduced into neuronal cells in a dose- and time-dependent manner. Transduced Tat-DJ-1 protein increased cell survival against hydrogen peroxide (H2O2) toxicity and also reduced intracellular ROS. In addition, Tat-DJ-1 protein inhibited DNA fragmentation induced by H2O2. Furthermore, in animal models, immunohistochemical analysis revealed that Tat-DJ-1 protein prevented neuronal cell death induced by transient forebrain ischemia in the CA1 region of the hippocampus. These results demonstrate that transduced Tat-DJ-1 protein protects against cell death in vitro and in vivo, suggesting that the transduction of Tat-DJ-1 may be useful as a therapeutic agent for ischemic injuries related to oxidative stress.
Animals
;
Blood-Brain Barrier/metabolism
;
Brain Ischemia/*metabolism/pathology/prevention & control
;
CA1 Region, Hippocampal/drug effects/metabolism/pathology
;
Cell Line, Tumor
;
Cell Survival/drug effects
;
Gerbillinae
;
Intracellular Signaling Peptides and Proteins/*administration & dosage/biosynthesis/pharmacokinetics
;
Lipid Peroxidation
;
Malondialdehyde/metabolism
;
Mice
;
Neuroprotective Agents/*administration & dosage/pharmacokinetics
;
Oncogene Proteins/*administration & dosage/biosynthesis/pharmacokinetics
;
*Oxidative Stress
;
Prosencephalon/drug effects/metabolism/pathology
;
Rats
;
Recombinant Fusion Proteins/*administration & dosage/biosynthesis/pharmacokinetics
;
tat Gene Products, Human Immunodeficiency Virus/*administration & dosage/biosynthesis/pharmacokinetics