1.Preparation and physicochemical properties of nano-silver acupuncture needles.
Wenfeng HAI ; Jiaxin LIU ; Yang LIU ; Tingfang BAI ; Xiaomei HAN ; Ying YING ; Suocai TONG ; Tegexi BAIYIN ; Yingsong CHEN
Chinese Acupuncture & Moxibustion 2025;45(5):568-576
OBJECTIVE:
To explore the preparation of nano-silver acupuncture needles and evaluate the appearance, structure and properties.
METHODS:
Stainless steel acupuncture needles were pretreated by polishing with sandpaper and cleaning with ultrapure water and absolute ethanol. As the working electrodes, the needles were placed in an electrolyte solution contained silver nitrate (AgNO3), potassium nitrate (KNO3), and polyvinylpyrrolidone (PVP); and the silver nanoparticles were deposited at a constant voltage of -0.2 V for 1 200 s. The heat-treatment was conducted at 600 ℃ for 15 min in an argon atmosphere to strengthen the adhesion between the nanoparticles and the substrate. The surface appearance and structure of nano-silver acupuncture needles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrical conductivity, thermal conductivity and biocompatibility of the needles were evaluated. The cytotoxicity and biocompatibility of the sample were assessed using the CCK-8 assay. According to the national standard, Acupuncture Needles (GB 2024-2016), the other physicochemical performances of nano-silver acupuncture needles were tested.
RESULTS:
①By controlling the AgNO3 concentration and the molar ratio of AgNO3 to PVP, it was found that at an AgNO3 concentration of 2 mmol/L and a molar ratio of 5∶1, silver nanoparticles with the diameter of 50-100 nm, regular appearance, and uniform distribution were obtained. At a lower concentration, the size of silver nanoparticles was smaller and unevenly distributed particles, whereas a higher concentration tended to produce a dendritic structure. ②By sandpaper polishing, acid etching pretreatment, and heat-treatment at 600 ℃ under argon for 15 min, the adhesion of silver nanoparticles on the surface of the needle body was strengthened, and the simulated pig skin puncture test showed the intact coating without shedding. ③SEM found that the silver nanoparticles were uniformly deposited, forming a nanofilm approximately 1.5 μm thick; XRD analysis showed the diffraction peaks corresponding to cubic crystal silver (111), (200), (220) and (311); and XPS detected characteristic peaks of Ag 3d3/2 and Ag 3d5/2, confirming the successful deposition and good crystallinity of the silver nanoparticles. ④Resistivity measurements indicated that the nano-silver acupuncture needles exhibited a resistivity of approximately 0.15 Ω·cm, about three times lower than that of unmodified stainless steel needles. The infrared thermography demonstrated that their thermal conductivity was superior to that of traditional acupuncture needles. In vitro CCK-8 cytotoxicity assay showed that the nano-silver acupuncture needles had no adverse effects on human skin fibroblasts and possessed good biocompatibility. ⑤ The key parameters such as needle tip performance, hardness, and the adhesion between the needle body and handle were in compliance with the requirements in Acupuncture Needles (GB 2024-2016), ensuring a quality guarantee provided for clinical applications.
CONCLUSION
The preparation of nano-silver acupuncture needles effectively overcomes the insufficient toughness of traditional silver needles and improves the electrical and thermal conductivity of stainless acupuncture needles.
Silver/chemistry*
;
Needles
;
Acupuncture Therapy/instrumentation*
;
Metal Nanoparticles/chemistry*
;
Humans
;
Electric Conductivity
;
Animals
2.Silver nanoparticles-resistance of HeLa cell associated with its unusually high concentration of α-ketoglutarate and glutathione.
Heming CHEN ; Yujing HE ; Xueqing CHEN ; Fuchang DENG ; Zhisong LU ; Yingshuai LIU ; Huamao DU
Chinese Journal of Biotechnology 2023;39(10):4189-4203
Silver nanoparticles (AgNPs) is known as one of the most valuable metal nanoparticles in antibacterial and anticancer application. AgNPs-resistant bacteria has been documented, but it is unclear whether cancer cells can also escape the anti-cancer effect of AgNPs. In this study, we aimed to investigate this phenomenon and its underlying mechanism. The antibacterial activity and cytotoxicity of AgNPs were measured in the presence of HeLa cell metabolites. The status of AgNPs in the system associated with metabolites were characterized by UV-Vis, Zetasizer Nano ZS, and transmission electron microscopy. Non-targeted metabolomics was used to reveal the metabolites components that bind with AgNPs. HeLa cells were injected intraperitoneally to establish the tumor-bearing mice model, and the stability of AgNPs in mice serum was analyzed. The results manifested that HeLa cell metabolites inhibited the anticancer and antibacterial effects of AgNPs in a dose-dependent manner by causing AgNPs aggregation. Effective metabolites that inhibited the biological activity of AgNPs were stable in 100 ℃, insoluble in chloroform, containing sulfur elements, and had a molecular weight less than 1 kDa in molecular weight. There were 115 compounds bound with AgNPs. In vitro experiments showed that AgNPs aggregation occurred only when the concentration of α-ketoglutarate (AKG) and glutathione (GSH) together reached a certain threshold. Interestingly, the concentration of AKG and GSH in HeLa cellular metabolites was 10 and 6 times higher than that in normal cervical epithelial cells, respectively, which explained why the threshold was reached. Furthermore, the stability of AgNPs in the serum of tumor-bearing mice decreased by 20% (P < 0.05) compared with the healthy mice. In conclusion, our study demonstrates that HeLa cells escaped the anti-cancer effect of AgNPs through the synergistic effect of AKG and GSH, suggesting the need to develop strategies to overcome this limitation.
Humans
;
Animals
;
Mice
;
HeLa Cells
;
Silver/pharmacology*
;
Ketoglutaric Acids/pharmacology*
;
Metal Nanoparticles
;
Anti-Bacterial Agents/pharmacology*
;
Glutathione
;
Microbial Sensitivity Tests
3.Effects of three-dimensional bioprinting antibacterial hydrogel on full-thickness skin defect wounds in rats.
Rong Hua JIN ; Zhen Zhen ZHANG ; Peng Qin XU ; Si Zhan XIA ; Ting Ting WENG ; Zhi Kang ZHU ; Xin Gang WANG ; Chuan Gang YOU ; Chun Mao HAN
Chinese Journal of Burns 2023;39(2):165-174
Objective: To explore the effects of three-dimensional (3D) bioprinting gelatin methacrylamide (GelMA) hydrogel loaded with nano silver on full-thickness skin defect wounds in rats. Methods: The experimental research method was adopted. The morphology, particle diameter, and distribution of silver nanoparticles in nano silver solution with different mass concentrations and the pore structure of silver-containing GelMA hydrogel with different final mass fractions of GelMA were observed by scanning electron microscope and the pore size was calculated. On treatment day 1, 3, 7, and 14, the concentration of nano silver released from the hydrogel containing GelMA with final mass fraction of 15% and nano silver with final mass concentration of 10 mg/L was detected by mass spectrometer. At 24 h of culture, the diameters of inhibition zone of GelMA hydrogel containing final mass concentration of 0 (no nano silver), 25, 50, and 100 mg/L nano silver against Staphylococcus aureus and Escherichia coli were detected. Fibroblasts (Fbs) and adipose stem cells (ASCs) were isolated respectively by enzymatic digestion using the discarded prepuce after circumcision from a 5-year-old healthy boy who was treated in the Department of Urology of the Second Affiliated Hospital of Zhejiang University School of Medicine in July 2020, and the discarded fat tissue after liposuction from a 23-year-old healthy woman who was treated in the Department of Plastic Surgery of the Hospital in July 2020. The Fbs were divided into blank control group (culture medium only), 2 mg/L nano sliver group, 5 mg/L nano sliver group, 10 mg/L nano sliver group, 25 mg/L nano sliver group, and 50 mg/L nano sliver group, which were added with the corresponding final mass concentrations of nano sliver solution, respectively. At 48 h of culture, the Fb proliferation viability was detected by cell counting kit 8 method. The Fbs were divided into 0 mg/L silver-containing GelMA hydrogel group, 10 mg/L silver-containing GelMA hydrogel group, 50 mg/L silver-containing GelMA hydrogel group, and 100 mg/L silver-containing GelMA hydrogel group and then were correspondingly treated. On culture day 1, 3, and 7, the Fb proliferation viability was detected as before. The ASCs were mixed into GelMA hydrogel and divided into 3D bioprinting group and non-printing group. On culture day 1, 3, and 7, the ASC proliferation viability was detected as before and cell growth was observed by live/dead cell fluorescence staining. The sample numbers in the above experiments were all 3. Four full-thickness skin defect wounds were produced on the back of 18 male Sprague-Dawley rats aged 4 to 6 weeks. The wounds were divided into hydrogel alone group, hydrogel/nano sliver group, hydrogel scaffold/nano sliver group, and hydrogel scaffold/nano sliver/ASC group, and transplanted with the corresponding scaffolds, respectively. On post injury day (PID) 4, 7, 14, and 21, the wound healing was observed and the wound healing rate was calculated (n=6). On PID 7 and 14, histopathological changes of wounds were observed by hematoxylin eosin staining (n=6). On PID 21, collagen deposition of wounds was observed by Masson staining (n=3). Data were statistically analyzed with one-way analysis of variance, analysis of variance for repeated measurement, Bonferroni correction, and independent sample t test. Results: The sliver nano particles in nano silver solution with different mass concentrations were all round, in scattered distribution and uniform in size. The silver-containing GelMA hydrogels with different final mass fractions of GelMA all showed pore structures of different sizes and interconnections. The pore size of silver-containing GelMA hydrogel with 10% final mass fraction was significantly larger than that of silver-containing GelMA hydrogels with 15% and 20% final mass fractions (with P values both below 0.05). On treatment day 1, 3, and 7, the concentration of nano silver released from silver-containing GelMA hydrogel in vitro showed a relatively flat trend. On treatment day 14, the concentration of released nano silver in vitro increased rapidly. At 24 h of culture, the diameters of inhibition zone of GelMA hydrogel containing 0, 25, 50, and 100 mg/L nano silver against Staphylococcus aureus and Escherichia coli were 0, 0, 0.7, and 2.1 mm and 0, 1.4, 3.2, and 3.3 mm, respectively. At 48 h of culture, the proliferation activity of Fbs in 2 mg/L nano silver group and 5 mg/L nano silver group was both significantly higher than that in blank control group (P<0.05), and the proliferation activity of Fbs in 10 mg/L nano silver group, 25 mg/L nano silver group, and 50 mg/L nano silver group was all significantly lower than that in blank control group (P<0.05). Compared with the that of Fbs in 0 mg/L silver-containing GelMA hydrogel group, the proliferation activity of Fbs in 50 mg/L silver-containing GelMA hydrogel group and 100 mg/L silver-containing GelMA hydrogel group was all significantly decreased on culture day 1 (P<0.05); the proliferation activity of Fbs in 50 mg/L silver-containing GelMA hydrogel group was significantly increased (P<0.05), while the proliferation activity of Fbs in 100 mg/L silver-containing GelMA hydrogel group was significantly decreased on culture day 3 (P<0.05); the proliferation activity of Fbs in 100 mg/L silver-containing GelMA hydrogel group was significantly decreased on culture day 7 (P<0.05). The proliferation activity of ASCs in 3D bioprinting group show no statistically significant differences to that in non-printing group on culture day 1 (P>0.05). The proliferation activity of ASCs in 3D bioprinting group was significantly higher than that in non-printing group on culture day 3 and 7 (with t values of 21.50 and 12.95, respectively, P<0.05). On culture day 1, the number of dead ASCs in 3D bioprinting group was slightly more than that in non-printing group. On culture day 3 and 5, the majority of ASCs in 3D bioprinting group and non-printing group were living cells. On PID 4, the wounds of rats in hydrogel alone group and hydrogel/nano sliver group had more exudation, and the wounds of rats in hydrogel scaffold/nano sliver group and hydrogel scaffold/nano sliver/ASC group were dry without obvious signs of infection. On PID 7, there was still a small amount of exudation on the wounds of rats in hydrogel alone group and hydrogel/nano sliver group, while the wounds of rats in hydrogel scaffold/nano sliver group and hydrogel scaffold/nano sliver/ASC group were dry and scabbed. On PID 14, the hydrogels on the wound surface of rats in the four groups all fell off. On PID 21, a small area of wounds remained unhealed in hydrogel alone group. On PID 4 and 7, the wound healing rates of rats in hydrogel scaffold/nano sliver/ASC group were significantly higher than those of the other three groups (P<0.05). On PID 14, the wound healing rate of rats in hydrogel scaffold/nano sliver/ASC group was significantly higher than the wound healing rates in hydrogel alone group and hydrogel/nano sliver group (all P<0.05). On PID 21, the wound healing rate of rats in hydrogel alone group was significantly lower than that in hydrogel scaffold/nano sliver/ASC group (P<0.05). On PID 7, the hydrogels on the wound surface of rats in the four groups remained in place; on PID 14, the hydrogel in hydrogel alone group was separated from the wounds of rats, while some hydrogels still existed in the new tissue of the wounds of rats in the other three groups. On PID 21, the collagen arrangement in the wounds of rats in hydrogel alone group was out of order, while the collagen arrangement in the wounds of rats in hydrogel/nano sliver group, and hydrogel scaffold/nano sliver/ASC group was relatively orderly. Conclusions: Silver-containing GelMA hydrogel has good biocompatibility and antibacterial properties. Its three-dimensional bioprinted double-layer structure can better integrate with new formed tissue in the full-thickness skin defect wounds in rats and promote wound healing.
Male
;
Rats
;
Animals
;
Humans
;
Hydrogels/pharmacology*
;
Bioprinting
;
Metal Nanoparticles
;
Rats, Sprague-Dawley
;
Silver/pharmacology*
;
Soft Tissue Injuries
;
Anti-Bacterial Agents
4.Mycosynthesis of thermostable silver nanoparticles by the endophytic Albifimbria verrucaria with antimicrobial and antiproliferative activities
Mina Nasry Zaky ; Noha Mohamed Abd Elhameed ; Adel A. El Mehalawy ; Samar Samir Mohamed
Malaysian Journal of Microbiology 2022;18(4):354-369
Aims:
This study was aimed to screen and isolate soil and endophytic fungi with the ability to biosynthesize stable silver nanoparticles (SNPs) with antimicrobial and antiproliferative activities.
Methodology and results:
A total of 60 fungal isolates isolated from soil and plant samples were screened for their ability to biosynthesize SNPs. Among which, 21 isolates have supported the biosynthesis of SNPs. Furthermore, the endophytic isolate PRR2.1 synthesized highly thermostable SNPs with long shelf life. The PRR2.1 isolate was identified as Albifimbria verrucaria by morphological and molecular means. The synthesis of SNPs was initially monitored by UV-Vis spectroscopy. Further characterization by transmission electron microscopy, X-ray diffraction and dynamic light scattering revealed well-dispersed spherical crystalline in nature SNPs with a mean size of 14 nm and zeta potential of –24.47 mV. Fourier transform infrared spectroscopy showed the presence of biomolecules adsorbed on the surface of biosynthesized SNPs responsible for their synthesis and stability. The mycosynthesized SNPs exhibited stronger antifungal activity against pathogenic strains of Aspergillus niger, A. flavus, A. fumigatus and Candida albicans with respect to its antibacterial activity against Escherichia coli, Staphylococcus aureus, Bacillus cereus and Klebsiella pneumoniae compared to standard antifungal itraconazole and antibiotic cefadroxil with mostly consistent minimum inhibitory concentration of 5.31 μg/mL. The biosynthesized SNPs demonstrated dose-dependent in vitro antiproliferative activity against cancerous HeLa cell line with IC50 value of 2.52 μg/mL and less cytotoxic activity against WI-38 (normal human lung fibroblasts) cell line with CC50 value of 10.2 μg/mL.
Conclusion, significance and impact of study
These results show the potential of endophytic fungi biosynthesized SNPs as possible biofriendly, safe and efficient antimicrobial agents with promising antiproliferative activity and low cytotoxicity, which can be furtherly implemented in various biomedical and biotechnological applications.
Silver
;
Nanoparticles
;
Soil Microbiology
;
Endophytes
;
Anti-Infective Agents
;
5.Optimization for the preparation process of silver nanoparticles and their biological activity.
Junna ZOU ; Wenhuan LUO ; Shan WANG ; Yan WANG
Journal of Central South University(Medical Sciences) 2022;47(10):1398-1407
OBJECTIVES:
Recently, the use of biological synthesis of metal nanoparticles has attracted widespread attention. Researchers are trying to find a biological method to synthesize silver nanoparticles with little environmental pollution and easy preparation, and to explore the impact of preparation conditions on the synthesis of silver nanoparticles. This study aims to explore the biological synthesis of silver nanoparticles (AgNPs) with controllable size and good effect and to compare their biological activity with that of AgNPs prepared by chemical method.
METHODS:
In this study, AgNPs were prepared by biological method with water extract of Tricholomagambosum (WET) and cell-free supernatant of Lactobacillus crispatus (CFS) as reducing agent and protective agent, and silver nitrate solution as precursor. Meanwhile, AgNPs was synthesized by sodium citrate chemical method. The effects of temperature, pH, dosage of extraction solution and light conditions on the biosynthesis of WET-AgNPs and CFS-AgNPs were investigated, and their characteristic of the synthesized WET-AgNPs and CFS-AgNPs were analyzed. Finally, the antibacterial effect, toxicity and selectivity of the 3 different AgNPs were compared.
RESULTS:
AgNPs were synthesized successfully by the 3 methods with various characteristics. The AgNPs prepared by biological method (WET-AgNPs , CFS-AgNPs) were greatly affected by pH and temperature. The WET-AgNPs and CFS-AgNPs prepared by the biological methods had better antibacterial effect than the AgNPs by the chemical method (all P<0.01). Between them, the WET-AgNPs had a slightly higher antibacterial effect than the CFS-AgNPs. Compared with the AgNPs prepared by chemical method, the toxicity of the WET-AgNPs and CFS-AgNPs to normal cells was lower (both P<0.01), and the cell selectivity of the CFS-AgNPs was better when the concentration was 480 μg/mL.
CONCLUSIONS
AgNPs with biological activity can be synthesized from WET and CFS, which have different biological activity compared with the AgNPs prepared by biological method.
Humans
;
Metal Nanoparticles
;
Fatigue Syndrome, Chronic
;
Silver/pharmacology*
;
Anti-Bacterial Agents/pharmacology*
;
Plant Extracts/pharmacology*
6.Influence of silver nanoparticles on resin-dentin bond strength durability in a self-etch and an etch-and-rinse adhesive system
Zahra JOWKAR ; Fereshteh SHAFIEI ; Elham ASADMANESH ; Fatemeh KOOHPEIMA
Restorative Dentistry & Endodontics 2019;44(2):e13-
OBJECTIVES: This study evaluated the effect of dentin pretreatment with silver nanoparticles (SNPs) and chlorhexidine (CHX) on the microshear bond strength (µSBS) durability of different adhesives to dentin. MATERIALS AND METHODS: Occlusal surfaces of 120 human molars were ground to expose flat dentin surfaces. The specimens were randomly assigned to six groups (n = 20). Three groups (A, B, and C) were bonded with Adper Single Bond 2 (SB) and the other groups (D, E, and F) were bonded with Clearfil SE Bond (SEB). Dentin was pretreated with CHX in groups B and E, and with SNPs in groups C and F. The specimens were restored with Z250 composite. Half of the bonded surfaces in each group underwent µSBS testing after 24 hours and the other half was tested after 6 months of water storage. RESULTS: SNP application was associated with a higher µSBS than was observed in the CHX and control groups for SEB after 24 hours (p < 0.05). A significantly lower µSBS was observed when no dentin pretreatment was applied compared to dentin pretreatment with CHX and SNPs for SB after 24 hours (p < 0.05). The µSBS values of the 6-month specimens were significantly lower than those obtained from the 24-hour specimens for all groups (p < 0.05). This decrease was much more pronounced when both adhesives were used without any dentin pretreatment (p < 0.05). CONCLUSIONS: SNPs and CHX reduced the degradation of resin-dentin bonds over a 6-month period for both adhesive systems.
Adhesives
;
Chlorhexidine
;
Dentin
;
Humans
;
Molar
;
Nanoparticles
;
Polymorphism, Single Nucleotide
;
Silver
;
Water
7.A Noval Method for Producing Antibacterial Wound Dressing by Using Fused Deposition Molding with Post-3D-printed Process.
Chinese Journal of Medical Instrumentation 2019;43(4):275-278
Using three-dimensional printing to produce antibacterial wound dressing is a new topic that will change the production style of wound dressing industry. Combining with post-3D-printed process, a desktop fused deposition molding equipment can be used to produce wound dressing containing polyvinyl alcohol, alginate and chitosan. The wound dressing produced by FDM has good aspects of absorbency, moisture vapour transmission rate and mechanical property. After loaded with antibacterial agent iodine and silver nano particle, the antibacterial activity rate increases to 99% and it is suitable to use as antibacterial wound dressing. This method affects the production of wound dressing to a more cost-effective way, and provides a possible individualized treatment for patient in the future.
Alginates
;
chemistry
;
Anti-Bacterial Agents
;
administration & dosage
;
Bacteria
;
drug effects
;
Bandages
;
economics
;
standards
;
Chitosan
;
chemistry
;
Humans
;
Iodine
;
administration & dosage
;
pharmacology
;
Nanoparticles
;
administration & dosage
;
Polyvinyl Alcohol
;
chemistry
;
Printing, Three-Dimensional
;
Silver
;
administration & dosage
;
pharmacology
;
Wound Healing
8.Microtensile bond strength of resin cement primer containing nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) to human dentin
Nushin ARJMAND ; Alireza BORUZINIAT ; Majid ZAKERI ; Hamideh Sadat MOHAMMADIPOUR
The Journal of Advanced Prosthodontics 2018;10(3):177-183
PURPOSE: The purpose of the current study was to evaluate the effect of incorporating nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) into a self-etching primer of a resin cement on the microtensile bond strength of dentin, regarding the proven antibacterial feature of NAg and remineralizing effect of NACP. MATERIALS AND METHODS: Flat, mid-coronal dentin from 20 intact extracted human third molars were prepared for cementation using Panavia F2.0 cement. The teeth were randomly divided into the four test groups (n=5) according to the experimental cement primer composition: cement primer without change (control group), primer with 1% (wt) of NACP, primer with 1% (wt) of physical mixture of NACP+Nag, and primer with 1% (wt) of chemical mixture of NACP+Nag. The resin cement was used according to the manufacturer's instructions. After storage in distilled water at 37℃ for 24 h, the bonded samples were sectioned longitudinally to produce 1.0 × 1.0 mm beams for micro-tensile bond strength testing in a universal testing machine. Failure modes at the dentin-resin interface were observed using a stereomicroscope. The data were analyzed by one-way ANOVA and Tukey's post-hoc tests and the level of significance was set at 0.05. RESULTS: The lowest mean microtensile bond strength was obtained for the NACP group. Tukey's test showed that the bond strength of the control group was significantly higher than those of the other experimental groups, except for group 4 (chemical mixture of NACP and NAg; P=.67). CONCLUSION: Novel chemical incorporation of NAg-NACP into the self-etching primer of resin cement does not compromise the dentin bond strength.
Calcium
;
Cementation
;
Dentin
;
Humans
;
Molar, Third
;
Nanoparticles
;
Resin Cements
;
Silver
;
Tooth
;
Water
9.Antifungal Effects of Silver Phytonanoparticles from Yucca shilerifera Against Strawberry Soil-Borne Pathogens: Fusarium solani and Macrophomina phaseolina.
Paola RUIZ-ROMERO ; Benjamín VALDEZ-SALAS ; Daniel GONZÁLEZ-MENDOZA ; Vianey MENDEZ-TRUJILLO
Mycobiology 2018;46(1):47-51
In the present study, the characterization and properties of silver nanoparticles from Yucca shilerifera leaf extract (AgNPs) were investigated using UV–visible spectroscopic techniques, zeta potential, and dynamic light scattering. The UV–visible spectroscopic analysis showed the absorbance peaked at 460 nm, which indicated the synthesis of silver nanoparticles. The experimental results showed silver nanoparticles had Z-average diameter of 729 nm with lower stability (195.1 mV). Additionally, our dates revealed that AgNPs showed broad spectrum antagonism (p ≤ .05) against Fusarium solani (83.05%) and Macrophomina phaseolina (67.05%) when compared to the control after nine days of incubation. Finally, AgNPs from leaf extracts of Y. shilerifera may be used as an agent of biocontrol of microorganism of importance. However, further studies will be needed to fully understand the agronanotechnological potentialities of AgNPs from Yucca schidigera.
Dynamic Light Scattering
;
Fragaria*
;
Fusarium*
;
Nanoparticles
;
Silver*
;
Yucca*
10.Toxicity testing of four silver nanoparticle-coated dental castings in 3-D LO2 cell cultures.
Yi-Ying ZHAO ; Qiang CHU ; Xu-Er SHI ; Xiao-Dong ZHENG ; Xiao-Ting SHEN ; Yan-Zhen ZHANG
Journal of Zhejiang University. Science. B 2018;19(2):159-167
To address the controversial issue of the toxicity of dental alloys and silver nanoparticles in medical applications, an in vivo-like LO2 3-D model was constructed within polyvinylidene fluoride hollow fiber materials to mimic the microenvironment of liver tissue. The use of microscopy methods and the measurement of liver-specific functions optimized the model for best cell performances and also proved the superiority of the 3-D LO2 model when compared with the traditional monolayer model. Toxicity tests were conducted using the newly constructed model, finding that four dental castings coated with silver nanoparticles were toxic to human hepatocytes after cell viability assays. In general, the toxicity of both the castings and the coated silver nanoparticles aggravated as time increased, yet the nanoparticles attenuated the general toxicity by preventing metal ion release, especially at high concentrations.
Cells, Cultured
;
Dental Casting Technique
;
Hepatocytes/drug effects*
;
Humans
;
Metal Nanoparticles/toxicity*
;
Silver/toxicity*
;
Toxicity Tests


Result Analysis
Print
Save
E-mail