1.Characterisation of Silver Nanoparticles using a Standardised Catharanthus roseus Aqueous Extract
Malaysian Journal of Medicine and Health Sciences 2018;14(Supplement 1):120-125
Introduction: The biosynthesis of nanoparticles has been proposed as a cost-effective and environmental friendly alternative to chemical and physical methods. The present study was aimed to characterise Catharanthus roseus (C. roseus)-silver nanoparticles (AgNPs) using a standardised C. roseus aqueous extract. Methods: The standardisation was performed by using Liquid Chromatography/Time-of-Flight ion trap Mass Spectrometry. An optimised C. roseus-AgNPs have been previously synthesised. Further characterisation of C. roseus-AgNPs was evaluated by zeta potential analysis and fourier transform infrared spectroscopy (FTIR). Results: The chromatography analysis has revealed presence of thirteen possible indole alkaloids in C. roseus extract which were lochrovicine, lochnerine, vinleurosine, vindolinine, tabersonine, catharanthine, serpentine, catharosine, vincristine, catharine, ajmalicine, vinleurosine, and vindolicine. Zeta potential analysis exhibited the value at -16.6 mV. FTIR spectrum of C. roseus aqueous extract showed the absorption band at 3210.83 cm-1 (C-H stretch), 2934.11 (C-H bond), 1578.15 (N=O stretch), 1388.76 and 1314.89 (N=O bend), 1119.29 (C-O bond) and 729.94 (C-Cl bond). In comparison, FTIR spectrum of C. roseus-AgNP s showed the absorption band at 2925.01 and 2924.97 (C-H bond), 1622.93 (C-C=C symmetric stretch), 1383.19 and 1384.13 (N-O bend), 1037.92/1038.76/1238.3/1117.2 (C-O bond), 3169.4 (O-H bond), 774.59 and 691.53 (C-Cl bond). Conclusion: The present findings have shown that the C. roseus aqueous extract contains alkaloids that may responsible as reducing and stabilising agents in the synthesis of AgNPs.
silver nanoparticles
2.Status of biological evaluation on silver nanoparticles.
Journal of Biomedical Engineering 2008;25(4):958-961
Silver nanoparticles have been widely used in medicinal and biological fields. Their biological evaluation is an important researchful field. In this paper are summarized the status quo of nano-hydroxyapatite biological evaluation at home and abroad. Although silver nanoparticles showed good biological compatibility when they were tested by contrast to ISO 10993 standards, some reports have proved that many medical devices loaded with silver could release silver ions (Ag+) which could translocate in blood circulation and cumulate in some organs such as liver and kidney. It may induce hepatotoxicity or renal toxicity and may lead to death in some situation extremely exposed to a certain dose of Ag+. The dimension of silver nanoparticles is close to silver ions and some reports have proved that they could translocate in body, so it is suggested that silver nanoparticles should induce the same toxicity with silver ions. In addition, silver nanoparticles have shown cytotoxicity in some experiment in vitro. But the mechanisms of its cytotoxity are not clear; it may attribute to the silver ions that release from silver nanoparticles or to the silver nanoparticles that permeate through cell membrane. Hence, there are some potential anxieties for the biological safety of silver nanoparticles.
Metal Nanoparticles
;
toxicity
;
Silver
;
toxicity
3.Size-dependent toxicity of silver nanoparticles to Glyptotendipes tokunagai.
Seona CHOI ; Soyoun KIM ; Yeon Jae BAE ; June Woo PARK ; Jinho JUNG
Environmental Health and Toxicology 2015;30(1):e2015003-
OBJECTIVES: This study aims to evaluate the size-dependent toxicity of spherical silver nanoparticles (Ag NPs) to an endemic benthic organism, Glyptotendipes tokunagai. METHODS: Ag nanoparticles of three nominal sizes (50, 100, and 150 nm) capped with polyvinyl pyrrolidone (PVP-Ag NPs) were used. Their physicochemical properties, acute toxicity (48 hours), and bioaccumulation were measured using third instar larvae of G. tokunagai. RESULTS: The aggregation and dissolution of PVP-Ag NPs increased with exposure time and concentration, respectively, particularly for 50 nm PVP-Ag NPs. However, the dissolved concentration of Ag ions was not significant compared with the median lethal concentration value for AgNO3 (3.51 mg/L). The acute toxicity of PVP-Ag NPs was highest for the smallest particles (50 nm), whereas bioaccumulation was greatest for the largest particles (150 nm). However, larger PVP-Ag NPs were absorbed and excreted rapidly, resulting in shorter stays in G. tokunagai than the smaller ones. CONCLUSIONS: The size of PVP-Ag NPs significantly affects their acute toxicity to G. tokunagai. In particular, smaller PVP-Ag NPs have a higher solubility and stay longer in the body of G. tokunagai, resulting in higher toxicity than larger PVP-Ag NPs.
Chironomidae
;
Ions
;
Larva
;
Nanoparticles*
;
Polyvinyls
;
Silver*
;
Solubility
4.Size-dependent toxicity of silver nanoparticles to Glyptotendipes tokunagai.
Seona CHOI ; Soyoun KIM ; Yeon Jae BAE ; June Woo PARK ; Jinho JUNG
Environmental Health and Toxicology 2015;30(1):e2015003-
OBJECTIVES: This study aims to evaluate the size-dependent toxicity of spherical silver nanoparticles (Ag NPs) to an endemic benthic organism, Glyptotendipes tokunagai. METHODS: Ag nanoparticles of three nominal sizes (50, 100, and 150 nm) capped with polyvinyl pyrrolidone (PVP-Ag NPs) were used. Their physicochemical properties, acute toxicity (48 hours), and bioaccumulation were measured using third instar larvae of G. tokunagai. RESULTS: The aggregation and dissolution of PVP-Ag NPs increased with exposure time and concentration, respectively, particularly for 50 nm PVP-Ag NPs. However, the dissolved concentration of Ag ions was not significant compared with the median lethal concentration value for AgNO3 (3.51 mg/L). The acute toxicity of PVP-Ag NPs was highest for the smallest particles (50 nm), whereas bioaccumulation was greatest for the largest particles (150 nm). However, larger PVP-Ag NPs were absorbed and excreted rapidly, resulting in shorter stays in G. tokunagai than the smaller ones. CONCLUSIONS: The size of PVP-Ag NPs significantly affects their acute toxicity to G. tokunagai. In particular, smaller PVP-Ag NPs have a higher solubility and stay longer in the body of G. tokunagai, resulting in higher toxicity than larger PVP-Ag NPs.
Chironomidae
;
Ions
;
Larva
;
Nanoparticles*
;
Polyvinyls
;
Silver*
;
Solubility
5.Effects of Water Chemistry on Aggregation and Soil Adsorption of Silver Nanoparticles.
Sujin BAE ; Yu Sik HWANG ; Yong Ju LEE ; Sung Kyu LEE
Environmental Health and Toxicology 2013;28(1):e2013006-
OBJECTIVES: In this study, we investigated the influence of ionic strength and natural organic matter (NOM) on aggregation and soil adsorption of citrate-coated silver nanoparticles (AgNPs). METHODS: Time-resolved dynamic light scattering measurements and batch adsorption experiments were used to study their aggregation and soil adsorption behaviors, respectively. RESULTS: The aggregation rate of AgNPs increased with increasing ionic strength and decreasing NOM concentration. At higher ionic strength, the AgNPs were unstable, and thus tended to be adsorbed to the soil, while increased NOM concentration hindered soil adsorption. To understand the varying behaviors of AgNPs depending on the environmental factors, particle zeta potentials were also measured as a function of ionic strength and NOM concentration. The magnitude of particle zeta potential became more negative with decreasing ionic strength and increasing NOM concentration. These results imply that the aggregation and soil adsorption behavior of AgNPs were mainly controlled by electrical double-layer repulsion consistent with the Derjaguin-Landau-Verwey-Overbeek theory. CONCLUSIONS: This study found that the aggregation and soil adsorption behavior of AgNPs are closely associated with environmental factors such as ionic strength and NOM and suggested that assessing the environmental fate and transport of nanoparticles requires a thorough understanding of particle-particle interaction mechanisms.
Adsorption*
;
Chemistry*
;
Nanoparticles*
;
Osmolar Concentration
;
Silver*
;
Soil*
;
Water*
6.Cytotoxic Potential of Silver Nanoparticles.
Tianlu ZHANG ; Liming WANG ; Qiang CHEN ; Chunying CHEN
Yonsei Medical Journal 2014;55(2):283-291
Silver nanoparticles (AgNPs) have been widely used in industrial, household, and healthcare-related products due to their excellent antimicrobial activity. With increased exposure of AgNPs to human beings, the risk of safety has attracted much attention from the public and scientists. In review of recent studies, we discuss the potential impact of AgNPs on individuals at the cell level. In detail, we highlight the main effects mediated by AgNPs on the cell, such as cell uptake and intracellular distribution, cytotoxicity, genotoxicity, and immunological responses, as well as some of the major factors that influence these effects in vivo and in vivo, such as dose, time, size, shape, surface chemistry, and cell type. At the end, we summarize the main influences on the cell and indicate the challenges in this field, which may be helpful for assessing the risk of AgNPs in future.
Chemistry
;
Family Characteristics
;
Humans
;
Nanoparticles*
;
Risk Assessment
;
Silver*
7.Antifungal Effects of Silver Phytonanoparticles from Yucca shilerifera Against Strawberry Soil-Borne Pathogens: Fusarium solani and Macrophomina phaseolina.
Paola RUIZ-ROMERO ; Benjamín VALDEZ-SALAS ; Daniel GONZÁLEZ-MENDOZA ; Vianey MENDEZ-TRUJILLO
Mycobiology 2018;46(1):47-51
In the present study, the characterization and properties of silver nanoparticles from Yucca shilerifera leaf extract (AgNPs) were investigated using UV–visible spectroscopic techniques, zeta potential, and dynamic light scattering. The UV–visible spectroscopic analysis showed the absorbance peaked at 460 nm, which indicated the synthesis of silver nanoparticles. The experimental results showed silver nanoparticles had Z-average diameter of 729 nm with lower stability (195.1 mV). Additionally, our dates revealed that AgNPs showed broad spectrum antagonism (p ≤ .05) against Fusarium solani (83.05%) and Macrophomina phaseolina (67.05%) when compared to the control after nine days of incubation. Finally, AgNPs from leaf extracts of Y. shilerifera may be used as an agent of biocontrol of microorganism of importance. However, further studies will be needed to fully understand the agronanotechnological potentialities of AgNPs from Yucca schidigera.
Dynamic Light Scattering
;
Fragaria*
;
Fusarium*
;
Nanoparticles
;
Silver*
;
Yucca*
8.Evaluation of Effect of Silvernanoparticle Treated Implant on Bone Formation
Sin Guen KIM ; Youn Jin YOON ; Young Man LEE ; Tae Sun LEE ; Dong Won CHOI ; Yun Jung SONG ; Jun Woo PARK ; Dong Ju CHOI
Journal of the Korean Association of Maxillofacial Plastic and Reconstructive Surgeons 2012;34(4):233-238
silver more useful and safer.]]>
Bone Regeneration
;
Nanoparticles
;
Osseointegration
;
Osteogenesis
;
Rabbits
;
Silver
;
Tibia
;
Torque
9.Inhibition Effects of Silver Nanoparticles against Powdery Mildews on Cucumber and Pumpkin.
Kabir LAMSAL ; Sang Woo KIM ; Jin Hee JUNG ; Yun Seok KIM ; Kyoung Su KIM ; Youn Su LEE
Mycobiology 2011;39(1):26-32
Powdery mildew is one of the most devastating diseases in cucurbits. Crop yield can decline as the disease severity increases. In this study, we evaluated the effect of silver nanoparticles against powdery mildew under different cultivation conditions in vitro and in vivo . Silver nanoparticles (WA-CV-WA13B) at various concentrations were applied before and after disease outbreak in plants to determine antifungal activities. In the field tests, the application of 100 ppm silver nanoparticles showed the highest inhibition rate for both before and after the outbreak of disease on cucumbers and pumpkins. Also, the application of 100 ppm silver nanoparticles showed maximum inhibition for the growth of fungal hyphae and conidial germination in in vivo tests. Scanning electron microscope results indicated that the silver nanoparticles caused detrimental effects on both mycelial growth and conidial germination.
Cucumis sativus
;
Cucurbita
;
Disease Outbreaks
;
Electrons
;
Germination
;
Hyphae
;
Nanoparticles
;
Silver
10.Mycosynthesis of thermostable silver nanoparticles by the endophytic Albifimbria verrucaria with antimicrobial and antiproliferative activities
Mina Nasry Zaky ; Noha Mohamed Abd Elhameed ; Adel A. El Mehalawy ; Samar Samir Mohamed
Malaysian Journal of Microbiology 2022;18(4):354-369
Aims:
This study was aimed to screen and isolate soil and endophytic fungi with the ability to biosynthesize stable silver nanoparticles (SNPs) with antimicrobial and antiproliferative activities.
Methodology and results:
A total of 60 fungal isolates isolated from soil and plant samples were screened for their ability to biosynthesize SNPs. Among which, 21 isolates have supported the biosynthesis of SNPs. Furthermore, the endophytic isolate PRR2.1 synthesized highly thermostable SNPs with long shelf life. The PRR2.1 isolate was identified as Albifimbria verrucaria by morphological and molecular means. The synthesis of SNPs was initially monitored by UV-Vis spectroscopy. Further characterization by transmission electron microscopy, X-ray diffraction and dynamic light scattering revealed well-dispersed spherical crystalline in nature SNPs with a mean size of 14 nm and zeta potential of –24.47 mV. Fourier transform infrared spectroscopy showed the presence of biomolecules adsorbed on the surface of biosynthesized SNPs responsible for their synthesis and stability. The mycosynthesized SNPs exhibited stronger antifungal activity against pathogenic strains of Aspergillus niger, A. flavus, A. fumigatus and Candida albicans with respect to its antibacterial activity against Escherichia coli, Staphylococcus aureus, Bacillus cereus and Klebsiella pneumoniae compared to standard antifungal itraconazole and antibiotic cefadroxil with mostly consistent minimum inhibitory concentration of 5.31 μg/mL. The biosynthesized SNPs demonstrated dose-dependent in vitro antiproliferative activity against cancerous HeLa cell line with IC50 value of 2.52 μg/mL and less cytotoxic activity against WI-38 (normal human lung fibroblasts) cell line with CC50 value of 10.2 μg/mL.
Conclusion, significance and impact of study
These results show the potential of endophytic fungi biosynthesized SNPs as possible biofriendly, safe and efficient antimicrobial agents with promising antiproliferative activity and low cytotoxicity, which can be furtherly implemented in various biomedical and biotechnological applications.
Silver
;
Nanoparticles
;
Soil Microbiology
;
Endophytes
;
Anti-Infective Agents
;