1.Lysophosphatidic acid (LPA) stimulates invasion and metastatic colonization of ovarian cancer cells through Rac activation.
Xuechen YU ; Yuanzhen ZHANG ; Huijun CHEN ; Email: KARREL@SINA.COM.
Chinese Journal of Oncology 2015;37(2):95-100
OBJECTIVETo investigate the mechanisms of lysophosphatidic acid (LPA) in stimulating invasion and metastatic colonization of ovarian cancer cells.
METHODSThe metastatic ability in vivo of ovarian cancer SK-OV3, HEY, OVCAR3, and IGROV1 cells was determined in tumor-bearing nude mouse models. Matrigel assay was used to detect the changes of response in vitro of ovarian cancer cells to LPA after Rac(-) or Rac(+) adenovirus treatment. LPA-induced Rho GTPase activation was detected by GST-fusion protein binding assay.
RESULTSThe peritoneal metastatic colonization assay showed overt metastatic colonization in mice receiving SK-OV3 and HEY cell inoculation, indicating that they are invasive cells. Metastatic colonization was not detected in animals receiving OVCAR3 and IGROV1 cells, indicating that these cells are non-invasive cells. In the matrigel invasion assay, exposure to LPA led to a notably greater migratory response in metastatic SK-OV3 and HEY cells (Optical density: SK-OV3 cells: 0.594±0.023 vs. 1.697±0.049, P<0.01; HEY cells: 0.804±0.070 vs. 1.851±0.095, P<0.01). But LPA did little in the non-metastatic OVCAR3 and IGROV1 cells (Optical density A: OVCAR3 cells: 0.336±0.017 vs. 0.374±0.007, P>0.05; IGROV1 cells: 0.491±0.036 vs. 0.479±0.061, P>0.05). LPA migratory responses of ovarian cancer cells were closely related to their metastatic colonization capabilities (r = 0.983, P<0.05). Rac(-) blocked the LPA response of invasive SK-OV3 and HEY cells (LPA-induced fold increase of cell migration: SK-OV3 cells: 2.988±0.095 vs. 0.997±0.100,P=0.01; HEY cells: 2.404±0.059 vs. 0.901±0.072, P=0.01). But Rac(+) confered the non-invasive cells with LPA response and invasion capability (LPA-induced fold increase of cell migration: OVCAR3 cells: 1.072±0.080 vs. 1.898±0.078, P<0.01; IGROV1 cells: 1.002±0.044 vs. 2.141±0.057, P<0.05). Among Rho GTPases, only Rac activation was different between ovarian cancer cell lines with different metastatic capability after LPA stimulation: Cdc42 could not be activated in both the invasive and non-invasive cell lines. RhoA could be activated in both the invasive and non-invasive cell lines. Rac could be activated by LPA in the invasive ovarian cancer cell lines. However, Rac could not be activated in the non-invasive cell lines.
CONCLUSIONLysophosphatidic acid stimulates invasion and metastasis of ovarian cancer cells through Rac activation.
Animals ; Cell Movement ; Female ; Humans ; Lysophospholipids ; metabolism ; Mice ; Ovarian Neoplasms ; metabolism ; Tumor Cells, Cultured ; rho GTP-Binding Proteins ; rhoA GTP-Binding Protein
2.Correlation of expression of RhoA (RhoC and their effector ROCK-1 with malignant phenotype of ovarian cancer cells in vitro.
Zhi-qiang HAN ; A-li ZHANG ; Ming-fu WU ; Yu-lan LIU ; Gang CHEN ; Fu-jun LI ; Qing-lei GAO ; Guo-ning LIAO ; Yun-ping LU ; Shi-xuan WANG ; Ding MA
Chinese Journal of Oncology 2004;26(7):385-388
OBJECTIVETo investigate the expression of RhoA, RhoC and their effector ROCK-1 in four ovarian cancer cell lines in vitro and their correlation with invasiveness.
METHODSExpression of RhoA, RhoC and ROCK-1 mRNA and protein in four ovarian cancer cell lines SW626, Skov-3, A2780 and Caov-3 was detected by RT-PCR and Western blot assay. Invasion assay was done in Boyden chamber.
RESULTSThe expression levels of RhoA, RhoC and ROCK-1 mRNA and protein varied in the four different cell lines examined. The expression level of RhoC, but not RhoA and ROCK-1, was significantly correlated with the invasive capability of these cells in vitro (r = 0.95, P < 0.01). Expression of RhoA at the level of transcription was not correlated with that at the translation level. The expression of RhoA and RhoC did not correlate with that of ROCK-1.
CONCLUSIONExpression level of RhoC may serve as an independent parameter in evaluating metastasis and become a new target in inhibiting ovarian cancer metastasis.
Cell Line, Tumor ; Cell Movement ; Female ; Gene Expression Regulation, Neoplastic ; Humans ; Intracellular Signaling Peptides and Proteins ; Neoplasm Invasiveness ; Neoplasm Metastasis ; Ovarian Neoplasms ; genetics ; metabolism ; pathology ; Phenotype ; Protein Biosynthesis ; Protein-Serine-Threonine Kinases ; biosynthesis ; genetics ; RNA, Messenger ; biosynthesis ; genetics ; Transcription, Genetic ; rho GTP-Binding Proteins ; biosynthesis ; genetics ; rho-Associated Kinases ; rhoA GTP-Binding Protein ; biosynthesis ; genetics ; rhoC GTP-Binding Protein
3.RhoA-Rho kinase signaling pathway mediates adventitial fibroblasts differentiation to myofibroblasts induced by TGF-β1.
Wen-Dong CHEN ; Yu-Feng CHU ; Jian-Jun LIU ; Mo-Na HONG ; Ping-Jin GAO
Acta Physiologica Sinica 2013;65(2):113-121
Vascular adventitial fibroblasts (AF) differentiation to myofibroblasts (MF) is the critical physiopathologic feature of vascular remodeling. This study was to investigate the role of RhoA-Rho kinase signaling pathway in AF differentiation to MF induced by transforming growth factor β1 (TGF-β1). The results showed that TGF-β1 up-regulated total RhoA protein expression and RhoA activity in cultured AF by Western blotting and Rho pull-down assay, respectively. TGF-β1 up-regulated phospho-Myosin phosphatase target subunit (MYPT1, a downstream substrate of Rho kinase) expression without altering Rho kinase protein expression, indicating TGF-β1 induced the enhancement of activity of Rho kinase. Ad-N19RhoA-hrGFP virus infection and Y27632, a specific inhibitor of Rho kinase, dose-dependently inhibited TGF-β1-induced α-SM-actin and Calponin expression, as markers of MF differentiation. In conclusion, the RhoA-Rho kinase pathway is involved in AF differentiation to MF induced by TGF-β1.
Actins
;
metabolism
;
Adventitia
;
cytology
;
Calcium-Binding Proteins
;
metabolism
;
Cell Differentiation
;
Cells, Cultured
;
Fibroblasts
;
cytology
;
Microfilament Proteins
;
metabolism
;
Myofibroblasts
;
cytology
;
Signal Transduction
;
Transforming Growth Factor beta1
;
pharmacology
;
Up-Regulation
;
rho-Associated Kinases
;
metabolism
;
rhoA GTP-Binding Protein
;
metabolism
4.Serum response factor participates in RhoA-induced endothelial cell F-actin rearrangements.
Ya-Ling HAN ; Hai-Bo YU ; Cheng-Hui YAN ; Zi-Min MENG ; Xiao-Lin ZHANG ; Jian KANG ; Shao-Hua LI ; Shi-Wen WANG
Acta Physiologica Sinica 2005;57(3):295-302
RhoA is one of the main members of RhoGTPase family involved in cell morphology, smooth muscle contraction, cytoskeletal microfilaments and stress fiber formation. It has been demonstrated that RhoA modulates endothelial cell permeability by its effect on F-actin rearrangement, but the molecular mechanism of rearrangement of actin cytoskeleton remains unclear. Recent studies prove that RhoA/Rho kinase regulates smooth muscle specific actin dynamics by activating serum response factor (SRF)-dependent transcription. To further investigate the molecular mechanism of the rearrangement of vascular endothelial cell actin cytoskeleton, we explored the relationship between the activation of SRF and F-actin rearrangement induced by RhoA in human umbilical vein endothelial cells (HUVECs). HUVECs were infected with the constitutively active forms of RhoA (Q63LRhoA) or the dominant negative forms of RhoA(T19NRhoA) using retrovirus vector pLNCX-Q63LRhoA or pLNCX-T19NRhoA, the positive clone was obtained by G418 selection. The expression and distribution of SRF in normal and infected cells were evaluated by immunohistochemistry and Western blot in complete medium and in serum-free medium. The effect of F-actin polymerization was detected by Rhodamine-Phalloidine staining. Infection of PLNCX-Q63LRhoA induced F-actin rearrangement and stress fiber formation in HUVECs, as well as enhanced the expression of SRF in the nuclei. In contrast, the cells infected with T19NRhoA showed no distinct changes. With serum deprivation, the expression of SRF increased obviously in both normal and infected HUVECs, but the subcellular localization of SRF was evidently different. In HUVECs, the localization of SRF was in the nuclei after 3 d with serum deprivation, but it was redistributed outside the nuclei after 5 d with serum deprivation. In cells infected with Q63LRhoA, the immunolocalization of SRF was always in the nuclei compared with HUVECs infected with T19NRhoA, which was almost always localized in the cytoplasm. In HUVECs, the rearrangement of F-actin and formation of stress fiber increased after 3 d with serum deprivation, but appeared decreased and unpolymerized after 5 d with serum deprivation. The polymerization of F-actin and the formation of stress fiber in HUVECs infected with Q63LRhoA kept during the period of serum-free culture, whereas the rearrangement of F-actin in cells infected with T19NRhoA was not found. These results suggest that RhoA influences endothelial F-actin rearrangement in part by regulating the expression and subcellular localization of SRF.
Actins
;
biosynthesis
;
genetics
;
Cytoskeleton
;
metabolism
;
Endothelium, Vascular
;
cytology
;
metabolism
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Serum Response Factor
;
biosynthesis
;
genetics
;
Umbilical Veins
;
cytology
;
rho-Associated Kinases
;
rhoA GTP-Binding Protein
;
physiology
5.Effects of RhoA/Rho-kinase in the regulation of penile erection.
National Journal of Andrology 2007;13(6):546-549
The erectile response of the penis depends on a balance between vasoconstrictor agents, which cause cavernosal smooth muscle to contract limiting blood inflow, and vasodilators, which relax cavernosal smooth muscle leading to increased blood inflow and erection. This review emphasizes the role of the RhoA/Rho-kinase pathway in the cavernosal circulation. While it is widely held that the nitric oxide-cyclic GMP-protein kinase G(NO-cGMP-PKG) pathway mediates vasorelaxation and penile erection, the vasoconstrictor actions of endothelin ET-1 and NE are reported to be mediated by the RhoA/Rho-kinase pathway in the cavernosal circulation and NO relax cavernosal smooth by inhibition of Rho-kinase. The application of Rho-kinase inhibitor on the penile erection may represent a new and promising method of treatment for erectile dysfunction.
Animals
;
Erectile Dysfunction
;
physiopathology
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
physiology
;
Male
;
Nitric Oxide
;
physiology
;
Penile Erection
;
physiology
;
Protein-Serine-Threonine Kinases
;
physiology
;
rho-Associated Kinases
;
rhoA GTP-Binding Protein
;
physiology
6.Expressions and activities of Rho GTPases in hypoxia and its relationship with tumor angiogenesis.
Yan XUE ; Feng BI ; Wen-chao LIU ; Yang-lin PAN ; Zhe-yi HAN ; Na LIU ; Chang-jiang LIU ; Hui-qin SHEN ; Xue-yong ZHANG
Chinese Journal of Oncology 2004;26(9):517-520
OBJECTIVETo study the expressions and activities of Rho GTPases in hypoxia and its relationship with tumor angiogenesis.
METHODSThree tumor cell lines were used in this study: gastric cancer cell lines AGS, SGC7901 and hepatocellular carcinoma cell line HepG2. Expression level of Rac1 mRNA was detected by semi-quantitative RT-PCR. Activity of Rac1 was determined by pull-down assay and expression of HIF-1alpha, VEGF, p53 and PTEN protein was detected by Westernblot.
RESULTSThe expression level of Rac1 mRNA was significantly increased in hypoxia compared to normoxia. Pull-down assay showed that hypoxia-induced activity of Rac1 was elevated in a time-dependent manner and climaxed at 3 hours. The expressions of HIF-1alpha and VEGF protein were up-regulated, while those of PTEN and p53 protein were down-regulated.
CONCLUSIONThese results indicate that hypoxia enhances Rac1 expression which might be involved in tumor angiogenesis by reacting with hypoxia-responsive genes.
Cell Hypoxia ; Cell Line, Tumor ; Hepatoblastoma ; blood supply ; metabolism ; pathology ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit ; biosynthesis ; genetics ; Liver Neoplasms ; blood supply ; metabolism ; pathology ; Neovascularization, Pathologic ; PTEN Phosphohydrolase ; biosynthesis ; genetics ; RNA, Messenger ; biosynthesis ; genetics ; Stomach Neoplasms ; blood supply ; metabolism ; pathology ; Tumor Suppressor Protein p53 ; biosynthesis ; genetics ; Vascular Endothelial Growth Factor A ; biosynthesis ; genetics ; rac1 GTP-Binding Protein ; biosynthesis ; genetics ; rho GTP-Binding Proteins ; biosynthesis ; genetics
7.Rho signaling inhibitor, Y-27632, inhibits invasiveness of metastastic hepatocellular carcinoma in a mouse model.
Feng XUE ; Jian-jun ZHANG ; Feng QIU ; Ming ZHANG ; Xiao-song CHEN ; Qi-gen LI ; Long-zhi HAN ; Zhi-feng XI ; Qiang XIA
Chinese Medical Journal 2007;120(24):2304-2307
Actins
;
chemistry
;
Amides
;
therapeutic use
;
Animals
;
Apoptosis
;
drug effects
;
Cytoskeleton
;
drug effects
;
Enzyme Inhibitors
;
therapeutic use
;
Female
;
Liver Neoplasms, Experimental
;
drug therapy
;
pathology
;
Mice
;
Neoplasm Invasiveness
;
Neoplasm Metastasis
;
Pyridines
;
therapeutic use
;
ras Proteins
;
analysis
;
rho-Associated Kinases
;
analysis
;
antagonists & inhibitors
;
rhoA GTP-Binding Protein
;
analysis
;
rhoC GTP-Binding Protein
8.Advances in the researches of spermatogenic protein, Ropporin.
Jing CHEN ; Zhi-ming CAI ; Yao-ting GUI
National Journal of Andrology 2009;15(9):833-835
Ropporin has been identified as a spermatogenic cell-specific protein and may be involved in sperm maturation, motility, capacitation, hyperactivation and acrosome reaction. However, latest studies have shown that Ropporin is expressed weakly in normal non-testis tissues and highly in hematologic malignancies. Its highly conservative expression in mammalians demonstrates its importance to life. This paper updates the characterization, expression and its distribution, and biological function of Ropporin, and the advances in the clinical researches of the protein.
Animals
;
Humans
;
Male
;
Membrane Proteins
;
physiology
;
Spermatogenesis
;
rho GTP-Binding Proteins
;
physiology
9.Function of Rho GTPase Activating Protein 11A in Tumors.
Hui-Nian ZHOU ; Yan-Xian REN ; Long LI ; Ke-Shen WANG ; Zuo-Yi JIAO
Chinese Medical Journal 2018;131(11):1365-1366
10.Role of LPA and the Hippo pathway on apoptosis in salivary gland epithelial cells.
Sung Min HWANG ; MeiHong JIN ; Yong Hwan SHIN ; Seul KI CHOI ; Eun NAMKOONG ; MinKyoung KIM ; Moon Yong PARK ; Kyungpyo PARK
Experimental & Molecular Medicine 2014;46(12):e125-
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid involved in numerous physiological responses. However, the expression of LPA receptors and the role of the Hippo signaling pathway in epithelial cells have remained elusive. In this experiment, we studied the functional expression of LPA receptors and the associated signaling pathway using reverse transcriptase-PCR, microspectrofluorimetry, western blotting and immunocytochemistry in salivary gland epithelial cells. We found that LPA receptors are functionally expressed and involved in activating the Hippo pathway mediated by YAP/TAZ through Lats/Mob1 and RhoA/ROCK. Upregulation of YAP/TAZ-dependent target genes, including CTGF, ANKRD1 and CYR61, has also been observed in LPA-treated cells. In addition, based on data suggesting that tumor necrosis factor (TNF)-alpha induces cell apoptosis, LPA upregulates TNF-induced caspase-3 and cleaved Poly(ADP-ribose)polymerase (PARP). However, small interfering RNA treatment to Yes-associated protein (YAP) or transcriptional co-activator with a PDZ-binding motif (TAZ) significantly decreased TNF-alpha- and LPA-induced apoptosis, suggesting that YAP and TAZ modulate the apoptotic pathway in salivary epithelial cells.
Adaptor Proteins, Signal Transducing/genetics/metabolism
;
*Apoptosis
;
Cell Line
;
Epithelial Cells/*cytology/metabolism
;
Gene Expression Regulation
;
Humans
;
Intracellular Signaling Peptides and Proteins/genetics/metabolism
;
Lysophospholipids/*metabolism
;
Phosphoproteins/genetics/metabolism
;
Protein-Serine-Threonine Kinases/*metabolism
;
RNA Interference
;
RNA, Small Interfering/genetics
;
Receptors, Lysophosphatidic Acid/genetics/*metabolism
;
Salivary Glands/*cytology/metabolism
;
*Signal Transduction
;
Tumor Necrosis Factor-alpha/metabolism
;
rho-Associated Kinases/metabolism
;
rhoA GTP-Binding Protein/metabolism