1.Mume Fructus Restores Intestinal Mucosal Epithelial Barrier Through MEK/ERK Signaling Pathway in Mouse Model of Inflammatory Bowel Disease
Huachen LIU ; Chonghao ZHANG ; Yalan LI ; Jie LIU ; Jialong SU ; Na LI ; Shaoshuai LIU ; Qing WANG ; Guiying PENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):76-85
ObjectiveTo clarify the repair effect of Mume Fructus on the intestinal mucosal epithelial barrier in the mouse model of inflammatory bowel disease (IBD) and explore the repair mechanism. MethodsThirty-six male C57BL/6 mice were randomly assigned into six groups: normal, model, low-, medium-, and high-dose (200, 400, and 800 mg·kg-1) Mume Fructus, and sulfasalazine (300 mg·kg-1). Except the normal group, the rest groups had free access to 2% dextran sulfate sodium (DSS) solution for seven days to establish the IBD model, followed by a seven-day drug intervention. The body weight change and disease activity index (DAI) were recorded. After the last administration, spleen and colon tissue samples were collected to analyze the differences in colon length and spleen index. Hematoxylin-eosin staining was used to observe the morphology of the colon tissue. The level of diamine oxidase (DAO) in the serum was measured by the DAO assay kit. Immunohistochemistry was employed to determine the expression of tight junction proteins such as Claudin-1, Occludin, and zonula occludens-1 (ZO-1) in the colon tissue. Real-time PCR was performed to measure the mRNA levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the colon tissue. Finally, Western blot was employed to determine the protein levels of mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated kinase (ERK), phosphorylated (p)-MEK, and phosphorylated ERK in the colon tissue. ResultsCompared with the normal group, the model group exhibited decreases in body weight and colon length (P<0.01), increases in DAI, spleen index, and serum DAO level (P<0.01), damaged colonic epithelium and goblet cells, and obvious infiltration of inflammatory cells. In addition, the model group exhibited higher positive expression of Claudin-1, Occludin, and ZO-1 (P<0.01), higher mRNA levels of TNF-α and IL-1β (P<0.01), and higher protein levels of p-MEK and p-ERK (P<0.05, P<0.01) than the normal group. However, sulfasalazine and three doses of Mume Fructus markedly decreased the body weight and DAI (P<0.05), recovered the colon length and spleen index, alleviated colon tissue damage, lowered the level of DAO in the serum (P<0.01), and down-regulated the mRNA levels of TNF-α and IL-1β (P<0.01) and the protein levels of p-MEK and p-ERK (P<0.05). Sulfasalazine and low- and medium-dose Mume Fructus increased the positive expression of Occludin, Claudin-1, and ZO-1 (P<0.05, P<0.01). Furthermore, high-dose Mume Fructus elevated the protein expression of Occludin (P<0.05). ConclusionMume Fructus can restore the expression of intestinal epithelial tight junction proteins by inhibiting the phosphorylation of proteins in the MEK/ERK signaling pathway and down-regulating the levels of TNF-α and IL-1β, thus repairing the intestinal mucosal barrier in the mouse model of IBD.
2.Effect of Yuxuebi Tablets on mice with inflammatory pain based on GPR37-mediated inflammation resolution.
Ying LIU ; Guo-Xin ZHANG ; Xue-Min YAO ; Wen-Li WANG ; Ao-Qing HUANG ; Hai-Ping WANG ; Chun-Yan ZHU ; Na LIN
China Journal of Chinese Materia Medica 2025;50(1):178-186
In order to investigate whether the effect of Yuxuebi Tablets on the peripheral and central inflammation resolution of mice with inflammatory pain is related to their regulation of G protein-coupled receptor 37(GPR37), an inflammatory pain model was established by injecting complete Freund's adjuvant(CFA) into the paws of mice, with a sham-operated group receiving a similar volume of normal saline. The mice were assigned randomly to the sham-operated group, model group, ibuprofen group(91 mg·kg~(-1)), and low-, medium-, and high-dose groups of Yuxuebi Tablets(60, 120, and 240 mg·kg~(-1)). The drug was administered orally from days 1 to 19 after modeling. Von Frey method and the hot plate test were used to detect mechanical pain thresholds and heat hyperalgesia. The levels of interleukin-10(IL-10) and transforming growth factor-beta(TGF-β) in the spinal cord were quantified using enzyme-linked immunosorbent assay(ELISA), and the mRNA and protein expression of GPR37 in the spinal cord was measured by real-time quantitative reverse transcription PCR(qRT-PCR) and Western blot. Additionally, immunofluorescence was used to detect the expression of macrosialin antigen(CD68), mannose receptor(MRC1 or CD206), and GPR37 in dorsal root ganglia, as well as the expression of calcium-binding adapter molecule 1(IBA1), CD206, and GPR37 in the dorsal horn of the spinal cord. The results showed that compared with those of the sham-operated group, the mechanical pain thresholds and hot withdrawal latency of the model group significantly declined, and the expression of CD68 in the dorsal root ganglia and the expression of IBA1 in the dorsal horn of the spinal cord significantly increased. The expression of CD206 and GPR37 significantly decreased in the dorsal root ganglion and dorsal horn of the spinal cord, and IL-10 and TGF-β levels in the spinal cord were significantly decreased. Compared with those of the model group, the mechanical pain thresholds and hot withdrawal latency of the high-dose group of Yuxuebi Tablets significantly increased, and the expression of CD68 in the dorsal root ganglion and IBA1 in the dorsal horn of the spinal cord significantly decreased. The expression of CD206 and GPR37 in the dorsal root ganglion and dorsal horn of the spinal cord significantly increased, as well as IL-10 and TGF-β levels in the spinal cord. These findings indicated that Yuxuebi Tablets may reduce macrophage(microglial) infiltration and foster M2 macrophage polarization by enhancing GPR37 expression in the dorsal root ganglia and dorsal horn of the spinal cord of CFA-induced mice, so as to improve IL-10 and TGF-β levels, promote resolution of both peripheral and central inflammation, and play analgesic effects.
Inflammation/genetics*
;
Pain/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Mice
;
Freund's Adjuvant/pharmacology*
;
Ibuprofen
;
Pain Threshold/drug effects*
;
Hyperalgesia/genetics*
;
Ganglia, Spinal
;
Interleukin-10/genetics*
;
Transforming Growth Factor beta/genetics*
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tablets
;
Receptors, G-Protein-Coupled
3.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
4.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal
5.Identification and expression analysis of seed dehydration tolerance and PLD gene family in Panax medicinal plants.
Chao-Lin LI ; Min HUANG ; Na GE ; Qing-Yan WANG ; Jin-Shan JIA ; Ting LUO ; Jin-Yan ZHANG ; Ping ZHOU ; Jun-Wen CHEN
China Journal of Chinese Materia Medica 2025;50(12):3307-3321
Panax species are mostly valuable medicinal plants. While some species' seeds are sensitive to dehydration, the dehydration tolerance of seeds from other Panax species remains unclear. The phospholipase D(PLD) gene plays an important role in plant responses to dehydration stress. However, the characteristics of the PLD gene family and their mechanisms of response to dehydration stress in seeds of Panax species with different dehydration tolerances are not well understood. This study used seeds from eight Panax species to measure the germination rates and PLD activity after dehydration and to analyze the correlation between dehydration tolerance and seed traits. Bioinformatics analysis was also conducted to characterize the PnPLD and PvPLD gene families and to evaluate their expression patterns under dehydration stress. The dehydration tolerance of Panax seeds was ranked from high to low as follows: P. ginseng, P. zingiberensis, P. quinquefolius, P. vietnamensis var. fuscidiscus, P. japonicus var. angustifolius, P. japonicus, P. notoginseng, and P. stipuleanatus. A significant negative correlation was found between dehydration tolerance and seed shape(three-dimensional variance), with flatter seeds exhibiting stronger dehydration tolerance(r=-0.792). Eighteen and nineteen PLD members were identified in P. notoginseng and P. vietnamensis var. fuscidiscus, respectively. These members were classified into five isoforms: α, β, γ, δ, and ζ. The gene structures, subcellular localization, physicochemical properties, and other characteristics of PnPLD and PvPLD were similar. Both promoters contained regulatory elements associated with plant growth and development, hormone responses, and both abiotic and biotic stress. During dehydration, the PLD enzyme activity in P. notoginseng seeds gradually increased as the water content decreased, whereas in P. vietnamensis var. fuscidiscus, PLD activity first decreased and then increased. The expression of PLDα and PLDδ in P. notoginseng seeds initially increased and then decreased, whereas in P. vietnamensis var. fuscidiscus, the expression of PLDα and PLDδ consistently decreased. In conclusion, the dehydration tolerance of Panax seeds showed a significant negative correlation with seed shape. The dehydration tolerance in P. vietnamensis var. fuscidiscus and dehydration sensitivity of P. notoginseng seeds may be related to differences in PLD enzyme activity and the expression of PLDα and PLDδ genes. This study provided the first systematic comparison of dehydration tolerance in Panax seeds and analyzed the causes of tolerance differences and the optimal water content for long-term storage at ultra-low temperatures, thus providing a theoretical basis for the short-term and ultra-low temperature long-term storage of medicinal plant seeds with varying dehydration tolerances.
Seeds/metabolism*
;
Panax/physiology*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Phospholipase D/metabolism*
;
Plants, Medicinal/enzymology*
;
Germination
;
Multigene Family
;
Water/metabolism*
;
Dehydration
;
Phylogeny
6.Effects and mechanisms of Yuxuebi Tablets combined with ibuprofen in treating chronic musculoskeletal pain through "integrated regulation of inflammation and pain-related oxylipins".
Ao-Qing HUANG ; Wen-Li WANG ; Guo-Xin ZHANG ; Ying LIU ; Na LIN ; Chun-Yan ZHU
China Journal of Chinese Materia Medica 2025;50(13):3763-3777
This study adopted a three-dimensional "effect-dose-mechanism" evaluation system to screen the optimal regimen of Yuxuebi Tablets(YXB) combined with ibuprofen(IBU) for chronic musculoskeletal pain(CMP) intervention and elucidate its pharmacological mechanism, so as to provide a scientific basis for the clinical application of the regimen. The experiments were conducted using 8-week-old ICR mice, which were randomly divided into sham operation(sham) group, model(CFA) group, IBU group, YXB group, stasis paralysis tablets combined with ibuprofen low-dose group(IBU-L-YXB), stasis paralysis combined with ibuprofen high-dose group(IBU-H-YXB), stasis paralysis tablets combined with ibuprofen high-dose with ibuprofen discontinuation on the 10th day of administration(IBU-10-YXB), and stasis paralysis tablets combined with ibuprofen high-dose with ibuprofen halving on the 10th day of administration(IBU-1/2-YXB) group. An animal model was established using the CFA plantar injection method. On D0(the second day post-modeling), the success of model establishment was assessed, followed by continuous drug administration for 18 consecutive days from D1 to D18. During this period, mechanical pain threshold was measured by the Von Frey test; thermal hyperalgesia was detected by the hot plate test, and depression-like behavior was observed by the tail suspension test. After treatment, peripheral blood was collected from all groups for complete blood biochemical analysis, and the injected feet of the sham, CFA, IBU, YXB, IBU-YXB, and IBU-10-YXB groups were subjected to oxylipin metabolomics analysis. Immunofluorescence double staining was further performed to detect the co-expression of key oxylipin metabolic enzymes(COX2, LTA4H, and 5/12/15-LOX) and macrophage marker CD68 in the sham, CFA, IBU, and YXB-L/M/H groups. Subsequently, confirmatory analysis of positive indicators was conducted in the sham, CFA, IBU, YXB, IBU-YXB, and IBU-10-YXB groups. On D6(acute phase), mechanical pain sensitivity data showed that compared with the CFA group, only the three combination groups(IBU-YXB, IBU-10-YXB, and IBU-1/2-YXB) exhibited significantly increased paw withdrawal thresholds. On D17(chronic phase), only the IBU-10-YXB group showed a mechanical pain threshold significantly higher than all other monotherapy and combination groups. On D17, thermal pain data showed that compared with the CFA group, all groups except IBU-1/2-YXB had significantly prolonged paw withdrawal latency. On D18, tail suspension data showed that compared with the CFA group, the YXB, IBU-YXB, and IBU-10-YXB groups had significantly reduced immobility time. In summary, IBU-10-YXB stably improved the core symptoms of acute and chronic inflammatory pain. Complete blood count data showed that compared with the sham group, the CFA group had significantly increased mean platelet volume(MPV), while compared with the CFA group, the IBU-YXB and IBU-10-YXB groups had significantly reduced MPV. Moreover, the platelet distribution width(PDW) of the IBU-10-YXB group was further reduced compared with the CFA group. These data suggest that the IBU-10-YXB combination regimen has superior effects on inflammation and blood circulation improvement compared with other treatment groups. At the mechanistic level, each treatment group differentially regulated pro-inflammatory and pro-resolving oxylipin(SPM). Specifically, compared with the CFA group, the IBU and IBU-YXB groups significantly inhibited the synthesis of the prostaglandin family downstream of COX2, reducing pro-inflammatory oxylipins PGD2 and 6-keto-PGF1α but inhibiting PGE1 and PGE2, which played positive roles in peripheral circulation, vasodilation, and inflammation resolution. Compared with the CFA group, the YXB group tended to inhibit the pro-inflammatory oxylipin LTB4 downstream of LTA4H and increase SPMs such as LXA4. The IBU-10-YXB group bidirectionally regulated pro-inflammatory oxylipins and SPMs. Compared with IBU, IBU-10-YXB significantly inhibited the pro-inflammatory mediator 5-HETE. Meanwhile, IBU-10-YXB broadly upregulated SPMs, as evidenced by significant upregulation of LXA4 compared with the CFA group, significant upregulation of LXA5 compared with the IBU and IBU-YXB groups, significant upregulation of RvD1 compared with the CFA group and all other treatment groups, and significant upregulation of RvD5 compared with the sham group. Immunofluorescence double staining results were as follows: compared with the CFA group, the IBU group specifically inhibited the oxylipin metabolic enzyme COX2. In the YXB group, COX2, LTA4H, and 5/12-LOX were significantly inhibited. Within the optimal analgesic dose range, YXB's inhibitory effects on COX2 and LTA4H were dose-dependent, while its inhibitory effects on 5/12-LOX were inversely dose-dependent. The two combination groups(IBU-YXB and IBU-10-YXB) inhibited COX2 and LTA4H without significantly affecting 5-LOX, while IBU-10-YXB further significantly inhibited 12-LOX. These results suggest that the IBU-10-YXB combination regimen effectively maintains stable inhibition of COX2, LTA4H, and 12-LOX while enhancing 5-LOX expression. This combinatorial strategy effectively suppresses pro-inflammatory oxylipins and promotes SPM biosynthesis, overcoming IBU's analgesic ceiling effect and its blockade of pain resolution pathways while compensating for YXB's inability to effectively intervene in acute pain and inflammation. Therefore, it achieves more stable anti-inflammatory, analgesic, and antidepressant effects.
Animals
;
Ibuprofen/administration & dosage*
;
Mice
;
Mice, Inbred ICR
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Musculoskeletal Pain/immunology*
;
Tablets
;
Humans
;
Chronic Pain/metabolism*
;
Drug Therapy, Combination
;
Disease Models, Animal
7.Clinical efficacy of multi-technique combination in the treatment of ischemic diabetic foot.
Hui-Yan LIU ; Yi YOU ; Wen-Gao WU ; Sheng RONG ; Qing-Hua ZHOU ; Na-Xin ZENG
China Journal of Orthopaedics and Traumatology 2025;38(9):917-923
OBJECTIVE:
To explore clinical efficacy of different technical combinations in treating ischemic diabetic foot (DF).
METHODS:
A retrospective analysis was conducted on 35 patients with DF who were treated with vascular interventional opening technique, periosteal distraction technique and bone cement coverage technique from January 2024 to November 2024. They were divided into comprehensive group and periosteal distraction group according to whether the vascular interventional opening technique was used in combination or not. There were 5 patients in comprehensive group, including 4 males and 1 female, aged from 59 to 73 years old with an average of (64.40±5.46) years old;the duration of diabetes ranged from 0.17 to 30.00 years with an average of (14.63±12.02) years;the courses of DF ranged from 30 to 150 days with an average of (84.00±61.48) days;2 patients were grade 2, 2 patients were grade 3, and 1 patient was grade 4 according to Wagner classification;combined vascular interventional opening, periosteal distraction and bone cement coverage surgery for treatment. There were 30 patients in periosteal stretch group, including 22 males and 8 females, aged from 58 to 86 years old with an average of (72.63±7.84) years old;the duration of diabetes was 10.00 (6.75, 16.75) years;the courses of DF was 30.00 (15.00, 37.50) days;14 patients were grade 2, 11 patients were grade 3, and 5 patients were grade 4 according to Wagner classification; combined periosteal distraction and bone cement coverage surgery for treatment. Changes of C-reactive protein (CRP), interleukin-6 (IL-6), and procalcitonin (PCT), toe skin temperature, peripheral capillary oxygen saturation (SpO2), and visual analogue scale (VAS) for pain were compared between two groups before operation and 1 week after operation. The number of operations, healing period, healing number, toe amputation number, preoperative fever situation and the number of complications were compared between two groups.
RESULTS:
Both groups were followed up for at least 6 months. There were no statistically significant differences in the number of operations, healing period, toe amputation rate, wound healing rate and complications between two groups (P>0.05). Before operation, the toe skin temperature of comprehensive group (26.98±0.88) ℃ was lower than that of periosteal distraction group (28.17±1.45) ℃, and the difference was statistically significant (P<0.05);while there were no statistically significant difference in CRP, IL-6, PCT, toe SpO2 and VAS between two groups (P>0.05). At 1 week after operation, IL-6, toe skin temperature, toe SpO2 and VAS in comprehensive group were 12.29(7.92, 22.15) pg·ml-1, (36.02±0.23) ℃, (95.80±0.84) % and(1.40±0.55) respectively, while those in periosteal distraction group were 5.49(4.36, 7.45) pg·ml-1, (31.36±1.57) ℃, (84.53±6.38) %, (2.20±0.81);and there were statistically significant differences between two groups(P<0.05). CRP, IL-6 and VAS at 1 week after operation in both groups were decreased compared with those before operation, and the differences were statistically significant(P<0.05). The toe skin temperature and SpO2 were increased compared with those before operation, and the differences were statistically significant(P<0.001).
CONCLUSION
The multi-technique combination therapy, including vascular interventional opening technique, periostealdistraction technique and bone cement covering technique, could protect each other, enhance efficacy, effectively promote the wound healing of ischemic diabetic foot ulcer, and reduce the toe amputation rate. For moderate to severe ischemic DF, the combined use of periosteal distraction and bone cement coverage techniques has a satisfactory effect. For extremely severe ischemic DF with inflow tract lesions, vascular interventional opening techniques need to be added.
Humans
;
Male
;
Female
;
Middle Aged
;
Aged
;
Diabetic Foot/surgery*
;
Retrospective Studies
;
Aged, 80 and over
;
Ischemia/surgery*
;
Interleukin-6/metabolism*
8.Mechanism of inhibiting miR-34a-5p expression and promoting bone growth in mouse brain tissue by Semen Ziziphi Spinosae extract.
Yuan-Yuan PEI ; Yan XIE ; Na YIN ; Wen-Long MA ; Wei-Peng XING ; Gui-Zhi WANG ; Qing-Feng WANG
China Journal of Orthopaedics and Traumatology 2025;38(10):1061-1070
OBJECTIVE:
To explore the mechanism by which the extract of Semen Ziziphi Spinosae extract promotes bone growth in mice by modulation of the expression of miR-34a-5p in brain tissue.
METHODS:
Mice were assigned to four experimental groups:a normal control group, a drug administration group (receiving 0.320 mg·g-1 body weight of Semen Ziziphi Spinosae extract via intragastric administration), a positive control group (receiving 0.013 mg·g-1 body weight of jujube seed saponin via intragastric administration), and a combination group administration with Semen Ziziphi Spinosae extract plus a 5-hydroxytryptamine 2A receptor (5-HT2AR) agonist (intragastric administration of Semen Ziziphi Spinosae extract combined with intracerebroventricular injection of 8 μg P-MPPF per mice for the final three days of the experiment). Following a 20-day administration period, the effects of the interventions on bone growth, serum growth hormone (GH) levels, and 5-HT2AR expression in brain tissue were evaluated. MicroRNAs (miRNAs) that were differentially expressed in the brain tissues of mice exhibiting bone growth induced by Semen Ziziphi Spinosae extract, as compared to those in normal mice, were identified using a gene chip approach. The interaction between miR-34a-5p and 5-HT2AR was subsequently validated through quantitative reverse transcription polymerase chainreaction (RT-qPCR) and dual-luciferase reporter gene assays. Subsequently, by utilizing the miR-34a-5p inhibitor group and mimics group, along with the normal control group, the drug administration group, the positive control group, and the drug administration combined with miR-34a-5p inhibitor group, the variations in 5-HT2AR expression in mouse brain tissue across all groups were examined, and the binding activity of 5-hydroxytryptamine (5-HT) to the 5-hydroxytryptamine 1A receptor (5-HT1AR) in mice was assessed.
RESULTS:
The body lengths of the normal control group and the drug administration group were(8.9±0.3) and(10.4±0.4) cm;femur lengths were (8.5±0.3) and (9.1±0.5) mm;tibia lengths were (10.7±0.3) and (11.2±0.4) mm, respectively. The contents of GH levels were (58.6±8.2) and (72.9±6.1) ng·ml-1;and the contents of 5-HT2AR were (32.0±5.0) and (21.9± 5.5) ng·ml-1, respectively. Compared with the normal control group, the drug administration group promoted the growth of body length, femur, and tibia in mice, and increased GH secretion, showing statistically significant differences (P<0.05). Additionally, it significantly reduced the content of 5-HT2AR in brain tissue, with statistical significance (P<0.01). The gene chip analysis identified a total of 16 differentially expressed miRNAs, of which 13 were up-regulated and 3 were down-regulated. Bioinformatics analysis predicted that the up-regulated miR-34a-5p could regulate the expression of 5-HT2AR, a prediction that was confirmed through a dual-luciferase reporter gene assay, demonstrating a direct regulatory interaction between the two. Furthermore, in vivo experiments in mice revealed that overexpression and silencing of miR-34a-5p resulted in corresponding changes in the expression levels of 5-HT2AR in brain tissues/cells, as well as in the binding activity between 5-HT and 5-HT1AR.
CONCLUSION
The Semen Ziziphi Spinosae extract promotes animal bone growth by enhancing miR-34a-5p expression in brain tissue, downregulating the expression level of 5-HT2AR, improving the binding activity between 5-HT and 5-HT1AR, and extending slow-wave sleep duration, thereby stimulating GH secretion.
Animals
;
MicroRNAs/metabolism*
;
Mice
;
Male
;
Brain/metabolism*
;
Ziziphus/chemistry*
;
Bone Development/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Plant Extracts/pharmacology*
9.Non-Down-syndrome-related acute megakaryoblastic leukemia in children: a clinical analysis of 17 cases.
Ding-Ding CUI ; Ye-Qing TAO ; Xiao-Pei JIA ; An-Na LIAN ; Qiu-Xia FAN ; Dao WANG ; Xue-Ju XU ; Guang-Yao SHENG ; Chun-Mei WANG
Chinese Journal of Contemporary Pediatrics 2025;27(9):1113-1118
OBJECTIVES:
To investigate the clinical features and prognosis of children with non-Down-syndrome-related acute megakaryoblastic leukemia (non-DS-AMKL).
METHODS:
A retrospective analysis was conducted on the medical data of 17 children with non-DS-AMKL who were admitted to Children's Hospital of The First Affiliated Hospital of Zhengzhou University from January 2013 to December 2023, and their clinical features, treatment, and prognosis were summarized.
RESULTS:
Among the 17 children with non-DS-AMKL, there were 8 boys and 9 girls. Fourteen patients had an onset age of less than 36 months, with a median age of 21 months (range:13-145 months). Immunophenotyping results showed that 16 children were positive for CD61 and 13 were positive for CD41. The karyotype analysis was performed on 16 children, with normal karyotype in 6 children and abnormal karyotype in 9 children, among whom 5 had complex karyotype and 1 had no mitotic figure. Detected fusion genes included EVI1, NUP98-KDM5A, KDM5A-MIS18BP1, C22orf34-BRD1, WT1, and MLL-AF9. Genetic alterations included TET2, D7S486 deletion (suggesting 7q-), CSF1R deletion, and PIM1. All 17 children received chemotherapy, among whom 16 (94%) achieved complete remission after one course of induction therapy, and 1 child underwent hematopoietic stem cell transplantation (HSCT) and remained alive and disease-free. Of all children, 7 experienced recurrence, among whom 1 child received HSCT and died of graft-versus-host disease. At the last follow-up, six patients remained alive and disease-free.
CONCLUSIONS
Non-DS-AMKL primarily occurs in children between 1 and 3 years of age. The patients with this disorder have a high incidence rate of chromosomal abnormalities, with complex karyotypes in most patients. Some patients harbor fusion genes or gene mutations. Although the initial remission rate is high, the long-term survival rate remains low.
Humans
;
Male
;
Female
;
Leukemia, Megakaryoblastic, Acute/etiology*
;
Child, Preschool
;
Infant
;
Child
;
Retrospective Studies
;
Prognosis
;
Down Syndrome/complications*

Result Analysis
Print
Save
E-mail