1.Technological advances of serial analysis of gene expression.
Chinese Journal of Biotechnology 2002;18(3):377-380
Serial analysis of gene expression (SAGE) is an effective method of determining gene expression profiles of tissues and organs under different conditions. In this paper, the detail protocol of SAGE was introduced and some modified procedure of SAGE was reviewed.
Gene Expression Profiling
;
methods
2.Impact of Time Delay in Processing Blood Sample on Next Generation Sequencing for Transcriptome Analysis.
Jae Eun LEE ; So Young JUNG ; So Youn SHIN ; Young Youl KIM
Osong Public Health and Research Perspectives 2018;9(3):130-132
No abstract available.
Gene Expression Profiling*
;
RNA
;
Transcriptome*
4."Omics" in pharmaceutical research: overview, applications, challenges, and future perspectives.
Shi-Kai YAN ; Run-Hui LIU ; Hui-Zi JIN ; Xin-Ru LIU ; Ji YE ; Lei SHAN ; Wei-Dong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2015;13(1):3-21
In the post-genomic era, biological studies are characterized by the rapid development and wide application of a series of "omics" technologies, including genomics, proteomics, metabolomics, transcriptomics, lipidomics, cytomics, metallomics, ionomics, interactomics, and phenomics. These "omics" are often based on global analyses of biological samples using high through-put analytical approaches and bioinformatics and may provide new insights into biological phenomena. In this paper, the development and advances in these omics made in the past decades are reviewed, especially genomics, transcriptomics, proteomics and metabolomics; the applications of omics technologies in pharmaceutical research are then summarized in the fields of drug target discovery, toxicity evaluation, personalized medicine, and traditional Chinese medicine; and finally, the limitations of omics are discussed, along with the future challenges associated with the multi-omics data processing, dynamics omics analysis, and analytical approaches, as well as amenable solutions and future prospects.
Biomedical Research
;
methods
;
Gene Expression Profiling
;
Genomics
;
Metabolomics
;
Pharmacology
;
Proteomics
5.Resistance of different ecotypes of Gastrodia elata to tuber rot.
Jin-Qiang ZHANG ; Qing-Song YUAN ; Zhen OUYANG ; Cheng-Hong XIAO ; Yuan WEI ; Yan-Hong WANG ; Jiao XU ; Xin TANG ; Sheng WANG ; Xiao WANG ; Tao ZHOU
China Journal of Chinese Materia Medica 2022;47(9):2281-2287
Tuber rot has become a serious problem in the large-scale cultivation of Gastrodia elata. In this study, we compared the resistance of different ecotypes of G. elata to tuber rot by field experiments on the basis of the investigation of G. elata diseases. The histological observation and transcriptome analysis were conducted to reveal the resistance differences and the underlying mechanisms among different ecotypes. In the field, G. elata f. glauca had the highest incidence of tuber rot, followed by G. elata f. viridis, and G. elata f. elata and G. elata f. glauca×G. elata f. elata showed the lowest incidence. Tuber rot showcased obvious plant source specificity and mainly occurred in the buds and bottom of G. elata plants. After infection, the pathogen spread hyphae in host cortex cells, which can change the endophytic fungal community structure in the cortex and parenchyma of G. elata. G. elata f. glauca had thinner lytic layer and more sugar lumps in the parenchyma than G. elata f. elata. The transcription of genes involved in immune defense, enzyme synthesis, polysaccharide synthesis, carbohydrate transport and metabolism, hydroxylase activity, and aromatic compound synthesis had significant differences between G. elata f. glauca and G. elata f. elata. These findings suggested that the differences in resis-tance to tuber rot among different ecotypes of G. elata may be related to the varied gene expression patterns and secondary metabolites. This study provides basic data for the prevention and control of tuber rot and the improvement of planting technology for G. elata.
Ecotype
;
Gastrodia/microbiology*
;
Gene Expression Profiling
;
Plant Tubers/genetics*
6.Comparative transcriptome analysis of candidate genes involved in chlorogenic acid biosynthesis during fruit development in three pear varieties of Xinjiang Uygur Autonomous Region.
Hao WEN ; Xi JIANG ; Wenqiang WANG ; Minyu WU ; Hongjin BAI ; Cuiyun WU ; Lirong SHEN
Journal of Zhejiang University. Science. B 2022;23(4):345-351
Pear is one of the main fruits with thousands of years of cultivation history in China. There are more than 2000 varieties of pear cultivars around the world, including more than 1200 varieties or cultivars in China (Legrand et al., 2016). Xinjiang Uygur Autonomous Region is an important pear production region in China with 30 of varieties or cultivars. Pyrus sinkiangensis is the most popular variety, which is mainly distributed in Xinjiang (Zhou et al., 2018). Chlorogenic acid (CGA), p-coumaric acid, and arbutin are the main polyphenols in pear fruit, and their levels show great differences among different varieties (Li et al., 2014). CGA is a potential chemo-preventive agent, which possesses many important bioactivities including antioxidant, diabetes attenuating, and anti-obesity (Wang et al., 2021). Therefore, the specific CGA content of a variety is considered the embodiment of the functional nutritional value of pears.
Chlorogenic Acid
;
Fruit
;
Gene Expression Profiling
;
Pyrus/genetics*
;
Transcriptome
7.Screening and expression analysis of transcription factors involved in genuineness of Codonopsis pilosula in Shanxi.
Yu-Jia ZHAI ; Jun-Li DAI ; Xing LIU ; Xing-Rui TIAN ; Jiao-Jiao JI ; Jian-Ping GAO
China Journal of Chinese Materia Medica 2023;48(21):5779-5789
This study aims to mine the transcription factors that affect the genuineness of Codonopsis pilosula in Shanxi based on the transcriptome data of C. pilosula samples collected from Shanxi and Gansu, and then analyze the gene expression patterns, which will provide a theoretical basis for the molecular assisted breeding of C. pilosula. Gene ontology(GO) functional annotation, conserved motif prediction, and gene expression pattern analysis were performed for the differential transcription factors predicted based on the transcriptome data of C. pilosula from different habitats. A total of 61 differentially expressed genes(DEGs) were screened out from the transcriptome data. Most of the DEGs belonged to AP2/ERF-ERF family, with the conserved motif of [2X]-[LG]-[3X]-T-[3X]-[AARAYDRAA]-[3X]-[RG]-[2X]-A-[2X]-[NFP]. Forty-three of the DEGs showed significantly higher gene expression in C. pilosula samples from Shanxi than in the samples from Gansu, including 11 genes in the AP2/ERF-ERF family, 5 genes in the NAC fa-mily, 1 gene in the bHLH family, and 2 genes in the RWP-RK family, while 18 transcription factors showed higher expression levels in the samples from Gansu. GO annotation predicted that most of the DEGs were enriched in GO terms related to transcriptional binding activity(103), metabolic process(26), and stress response(23). The expression of transcription factor genes, CpNAC92, CpNAC100, CpbHLH128, and CpRAP2-7 was higher in the samples from Shanxi and in the roots of C. pilosula. CpNAC92, CpbHLH128, and CpRAP2-7 responded to the low temperature, temperature difference, and iron stresses, while CpNAC100 only responded to low temperature and iron stresses. The screening and expression analysis of the specific transcription factors CpNAC92, CpNAC100, CpbHLH128, and CpRAP2-7 in C. pilosula in Shanxi laid a theoretical foundation for further research on the mechanism of genuineness formation of C. pilosula.
Codonopsis/chemistry*
;
Transcription Factors/genetics*
;
Gene Expression Profiling
;
Transcriptome
;
Iron
8.Comparative transcriptomic analysis of the haustoria of Gymnosporangium yamadae and G. asiaticum.
Han WENG ; Xia LIU ; Siqi TAO ; Yingmei LIANG
Chinese Journal of Biotechnology 2022;38(10):3825-3843
To provide a theoretical basis for controlling the spread of rust disease, cultivating disease-resistant varieties and reducing yield losses, we investigated the transcriptome differences between Gymnosporangium yamadae and Gymnosporangium asiaticum at the haustorial stage and revealed a specialized selection mechanism for Gymnosporangium species to infect host plants. We sequenced the transcriptomes of the haustoria in rust-infected leaves when basidiospores of G. yamadae and G. asiaticum infected their hosts, and obtained 21 213 and 13 015 unigenes, respectively. Real-time fluorescence quantitative PCR validation of five genes selected from G. yamadae and G. asiaticum, respectively, showed that their expression profiles were generally consistent with the results of transcriptome analysis, demonstrating the reliability of the transcriptome data. We used seven databases such as Nr, GO, KEGG, and KOG to perform gene function annotation and enrichment analysis, and found that the genes from both rusts were mainly enriched in cellular processes, translation, and metabolism-related pathways. Moreover, we used SignalP, TMHMM online website and other software such as dbCAN, BLSAT, HMMER to show that there were 343 (2.51%) and 175 (2.79%) candidate effector proteins containing 14 and 5 proteases and 10 and 3 lipases in the haustoria of G. yamadae and G. asiaticum, respectively. Furthermore, we used OrthoFinder, BLAST and KaKs Calculator software to analyze the evolutionary relationship of the two fungi. Among one-to-one homologous genes, gene pairs with > 82% alignment were considered to be under conservative selection, and 12.37% under positive selection. Five effectors of G. asiaticum were under positive selection, and one of which was a lipase. No significant differences were found in the enrichment of expressed genes between G. yamadae and G. asiaticum, indicating the biological processes involved in haustoria were relatively conserved, despite the typical host selectivity between species. The low protein similarity between the two species suggested that they were under greater host selective pressure and there was significant evolutionary divergence, which might be related to the host-specific selection mechanism. In the haustorial, the main purpose of the effectors might be to regulate physiological processes in the plants rather than attacking the host directly, and G. yamadae and G. asiaticum might use plant lipids as energy sources.
Transcriptome
;
Reproducibility of Results
;
Plant Diseases/microbiology*
;
Gene Expression Profiling/methods*
10.Profiling of genetic mutations among adult Filipino patients diagnosed with Acute Myeloid Leukemia using fluorescence in situ hybridization from 2014 to 2021: A single-institution study.
Aaron Pierre Calimag ; Januario Antonio Veloso, Jr.
Philippine Journal of Pathology 2023;8(1):21-26
INTRODUCTION:
Among patients with Acute Myeloid Leukemia (AML), the karyotype at diagnosis is an
important prognostic indicator for predicting outcomes. Several studies have been done to identify the
most common cytogenetic abnormalities seen in patients in other countries, however, limited studies have
been done in our setting.
OBJECTIVE:
The study aims to determine the most common abnormalities present among patients with AML
referred for Fluorescence in situ Hybridization (FISH) at the National Kidney and Transplant Institute.
METHODOLOGY:
The study included 131 adult patients with a mean age o 46. Fluorescence in situ Hybridization
was used to identify the following cytogenetic abnormalities: t(8;21), 11q23 (MLL), 16q22 (CBFB-MYH11),
t(15;17) (PML/RARA), t(9;22) (BCR/ABL), 7q31 deletion, and Monosomy 7.
RESULTS:
FISH was negative in 40% (n=53) of patients. 7q31 deletion is the most frequently identified
cytogenetic abnormality among patients with a single abnormality (n=17, 13%) present and is the most
frequently identified abnormality among patients with multiple abnormalities (n=26). 7q31 deletion is more
frequently observed among patients between the ages 51 to 60 years old and among patients with AML
with monocytic differentiation. 22% (n=29) of patients have multiple abnormalities, with the most common
abnormalities to occur together are 7q31 deletion and t(8;21) (n=20, 15%). Patients with negative results and
patients with multiple cytogenetic abnormalities are commonly seen within the 41 to 50 age group.
CONCLUSION
The current study provides a single-institution view of the cytogenetic abnormalities among
adult Filipino patients with AML using FISH. Further investigation on the clinical history of these patients,
with correlation with other methods, as well as epidemiologic studies are needed to better understand
the similarities and differences seen from previously reported incidences.
acute myeloid leukemia
;
fluorescence in situ hybridization
;
cytogenetics
;
profiling
;
hematology
;
Filipino