1.Characterization of protective effects of Jianpi Tongluo Formula on cartilage in knee osteoarthritis from a single cell-spatial heterogeneity perspective.
Yu-Dong LIU ; Teng-Teng XU ; Zhao-Chen MA ; Chun-Fang LIU ; Wei-Heng CHEN ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(3):741-749
This study aims to integrate data mining techniques of single cell transcriptomics and spatial transcriptomics, along with animal experiment validation, so as to systematically characterize the protective effects of Jianpi Tongluo Formula(JTF) on the cartilage in knee osteoarthritis(KOA) and elucidate the underlying molecular mechanisms. Single cell transcriptomics and spatial transcriptomics datasets(GSE254844 and GSE255460) of the cartilage tissue obtained from KOA patients were analyzed to map the single cell-spatial heterogeneity and identify key pathogenic factors. After that, a KOA rat model was established via knee joint injection of papain. The intervention effects of JTF on the expression features of these key factors were assessed through real-time quantitative polymerase chain reaction(PCR), Western blot, and immunohistochemical staining. As a result, the integrated single cell and spatial transcriptomics data identified distinct cell subsets with different pathological changes in different regions of the inflamed cartilage tissue in KOA, and their differentiation trajectories were closely related to the inflammatory fibrosis-like pathological changes of chondrocytes. Accordingly, the expression levels of the two key effect targets, namely nuclear receptor coactivator 4(NCOA4) and high mobility group box 1(HMGB1) were significantly reduced in the articular surface and superficial zone of the inflamed joints when JTF effectively alleviated various pathological changes in KOA rats, thus reversing the abnormal chondrocyte autophagy level, relieving the inflammatory responses and fibrosis-like pathological changes, and promoting the repair of chondrocyte function. Collectively, this study revealed the heterogeneous characteristics and dynamic changes of inflamed cartilage tissue in different regions and different cell subsets in KOA patients. It is worth noting that NCOA4 and HMGB1 were crucial in regulating chondrocyte autophagy and inflammatory reaction, while JTF could reverse the regulation of NCOA4 and HMGB1 and correct the abnormal molecular signal axis in the target cells of the inflamed joints. The research can provide a new research idea and scientific basis for developing a personalized therapeutic schedule targeting the spatiotemporal heterogeneity characteristics of KOA.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Osteoarthritis, Knee/pathology*
;
Humans
;
Male
;
Cartilage, Articular/metabolism*
;
Chondrocytes/metabolism*
;
Rats, Sprague-Dawley
;
Female
;
Protective Agents/administration & dosage*
;
Single-Cell Analysis
;
Middle Aged
;
HMGB1 Protein/metabolism*
2.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
3.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal
4.Mechanism of inhibiting miR-34a-5p expression and promoting bone growth in mouse brain tissue by Semen Ziziphi Spinosae extract.
Yuan-Yuan PEI ; Yan XIE ; Na YIN ; Wen-Long MA ; Wei-Peng XING ; Gui-Zhi WANG ; Qing-Feng WANG
China Journal of Orthopaedics and Traumatology 2025;38(10):1061-1070
OBJECTIVE:
To explore the mechanism by which the extract of Semen Ziziphi Spinosae extract promotes bone growth in mice by modulation of the expression of miR-34a-5p in brain tissue.
METHODS:
Mice were assigned to four experimental groups:a normal control group, a drug administration group (receiving 0.320 mg·g-1 body weight of Semen Ziziphi Spinosae extract via intragastric administration), a positive control group (receiving 0.013 mg·g-1 body weight of jujube seed saponin via intragastric administration), and a combination group administration with Semen Ziziphi Spinosae extract plus a 5-hydroxytryptamine 2A receptor (5-HT2AR) agonist (intragastric administration of Semen Ziziphi Spinosae extract combined with intracerebroventricular injection of 8 μg P-MPPF per mice for the final three days of the experiment). Following a 20-day administration period, the effects of the interventions on bone growth, serum growth hormone (GH) levels, and 5-HT2AR expression in brain tissue were evaluated. MicroRNAs (miRNAs) that were differentially expressed in the brain tissues of mice exhibiting bone growth induced by Semen Ziziphi Spinosae extract, as compared to those in normal mice, were identified using a gene chip approach. The interaction between miR-34a-5p and 5-HT2AR was subsequently validated through quantitative reverse transcription polymerase chainreaction (RT-qPCR) and dual-luciferase reporter gene assays. Subsequently, by utilizing the miR-34a-5p inhibitor group and mimics group, along with the normal control group, the drug administration group, the positive control group, and the drug administration combined with miR-34a-5p inhibitor group, the variations in 5-HT2AR expression in mouse brain tissue across all groups were examined, and the binding activity of 5-hydroxytryptamine (5-HT) to the 5-hydroxytryptamine 1A receptor (5-HT1AR) in mice was assessed.
RESULTS:
The body lengths of the normal control group and the drug administration group were(8.9±0.3) and(10.4±0.4) cm;femur lengths were (8.5±0.3) and (9.1±0.5) mm;tibia lengths were (10.7±0.3) and (11.2±0.4) mm, respectively. The contents of GH levels were (58.6±8.2) and (72.9±6.1) ng·ml-1;and the contents of 5-HT2AR were (32.0±5.0) and (21.9± 5.5) ng·ml-1, respectively. Compared with the normal control group, the drug administration group promoted the growth of body length, femur, and tibia in mice, and increased GH secretion, showing statistically significant differences (P<0.05). Additionally, it significantly reduced the content of 5-HT2AR in brain tissue, with statistical significance (P<0.01). The gene chip analysis identified a total of 16 differentially expressed miRNAs, of which 13 were up-regulated and 3 were down-regulated. Bioinformatics analysis predicted that the up-regulated miR-34a-5p could regulate the expression of 5-HT2AR, a prediction that was confirmed through a dual-luciferase reporter gene assay, demonstrating a direct regulatory interaction between the two. Furthermore, in vivo experiments in mice revealed that overexpression and silencing of miR-34a-5p resulted in corresponding changes in the expression levels of 5-HT2AR in brain tissues/cells, as well as in the binding activity between 5-HT and 5-HT1AR.
CONCLUSION
The Semen Ziziphi Spinosae extract promotes animal bone growth by enhancing miR-34a-5p expression in brain tissue, downregulating the expression level of 5-HT2AR, improving the binding activity between 5-HT and 5-HT1AR, and extending slow-wave sleep duration, thereby stimulating GH secretion.
Animals
;
MicroRNAs/metabolism*
;
Mice
;
Male
;
Brain/metabolism*
;
Ziziphus/chemistry*
;
Bone Development/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Plant Extracts/pharmacology*
5.Varicocele ligation with mobile phone microscope: Report of 5 cases and literature review.
Yan-Zhong LIU ; Chao LI ; Yu GAO ; Yu-Zhu LI ; Run ZHU ; Xue-Yuan XIANG ; Ying-Na HU ; Xin MA ; Chun-Yang WANG
National Journal of Andrology 2025;31(8):709-712
OBJECTIVE:
To investigate the feasibility of varicocele ligation with mobile phone microscope.
METHODS:
The high-performance mobile phone and mobile phone stand were combined to act as a mobile phone microscope. And the varicocele ligation was performed under the mobile phone microscope.
RESULTS:
All five patients successfully underwent varicocelectomy under the guidance of a mobile phone microscope. The average operation time was (112.8 ± 52.2)with ranged from 74.0 to 195.0 minutes. Three patients completed the follow-up after the operation with the proportion of improved sperm quality reaching 100.0% (3/3).
CONCLUSION
High- performance mobile phone microscope can be used for varicocele ligation.
Humans
;
Male
;
Ligation/methods*
;
Cell Phone
;
Adult
;
Varicocele/surgery*
;
Microscopy
;
Young Adult
6.Validation and Reproducibility of an Iodine-specific Food Frequency Questionnaire for Evaluating Dietary Iodine Intake in the Elderly Population of Gansu Province, China.
Qi JIN ; Tao WANG ; Mei Na JI ; Ji Zun WANG ; Xing MA ; Xin Yi WANG ; Jia Qi WANG ; He Xi ZHANG ; Yan Ling WANG ; Wen Xing GUO ; Wan Qi ZHANG
Biomedical and Environmental Sciences 2025;38(9):1168-1172
7.Role of mitochondrial biogenesis in rat model of coal workers' pneumoconiosis based on PGC-1α-NRF1-TFAM signaling pathway
Mei ZHANG ; Xiaoqiang HAN ; Lulu LIU ; Yan WANG ; Xin MA ; Yu XIONG ; Huifang YANG ; Na ZHANG
Journal of Environmental and Occupational Medicine 2025;42(12):1429-1437
Background Mitochondrial biogenesis is pivotal in coal workers' pneumoconiosis fibrosis, yet the role of the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)-nuclear respiratory factor 1 (NRF1)-mitochondrial transcription factor A (TFAM) pathway inmitochondrial biogenesis remains elusive, warranting further investigation. Objective To elucidate the role of the PGC-1α-NRF1-TFAM pathway in mitochondrial biogenesis in a rat coal workers' pneumoconiosis model through in vivo and in vitro experiments. Methods (1)n vivo: twelve SPF male SD rats (200-220 g) were randomized into a control group and a coal dust group (n=6 per group). After acclimatization, the coal dust group received 1 mL 50 mg·mL−1 coal dust suspension via intratracheal instillation; the controls received saline. Lung tissues were harvested after two months for histopathology [HE, Masson, and transmission electron microscopy (TEM) ], protein and mRNA analysis, and mitochondrial DNA (mtDNA) quantification by quantitative real-time polymerase chain reaction (qPCR). (2) In vitro: rat lung type II epithelial cells (RLE-6TN) cells were exposed to coal dust (50, 100, 200, and 400 mg·L−1, 24 h). CCK-8 assay determined optimal doses. Ultrastructural changes were analyzed by TEM. Cells were transfected with OE-PGC-1α (PGC-1α overexpression) or shRNA-PGC-1α plasmids (PGC-1α knockdown), and the transfection efficiency was determined by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). The expression levels of alpah-smooth muscle actin (α-SMA), citrate synthase (CS), PGC-1α, NRF1, TFAM, and fibronectin (Fn) proteins and their corresponding mRNA were detected using Western blot and RT-qPCR, respectively. The relative content of mtDNA was determined by qPCR. Results In vivo: the control group lung samples exhibited soft, pink parenchyma, while the coal dust-exposed lungs showed blackened surfaces with soft texture. The histopathological evaluation revealed intact alveolar walls in the controls versus structural destruction, micro-nodules, and fibrotic areas in the coal dust group. After Masson staining, coal dust deposits were found surrounded by blue collagen fibers in the exposed lungs, but absent in the controls. The coal dust group displayed significant upregulation of fibrotic marker α-SMA and downregulation of mitochondrial biogenesis markers (CS, PGC-1α, NRF1, TFAM) and mtDNA compared to the controls (P<0.05). In vitro: coal dust exposure reduced cell density and induced morphological alterations. TEM revealed evenly distributed normal mitochondria in controls versus mitochondrial swelling, disrupted cristae, and reduced numbers in exposed cells. The mitochondrial biogenesis markers were elevated in the coal dust + OE-PGC-1α group compared to the coal dust + OE-NC group (P<0.05); in contrast, they were decreased in the coal dust + shRNA-PGC-1α group compared to the coal dust + shRNA-NC group (P<0.05). Compared to the control group, the expression levels of the fibrosis marker α-SMA mRNA and protein were increased in the coal dust group (P<0.05). Overexpression of PGC-1α reduced α-SMA expression, while downregulation of PGC-1α increased its expression (P<0.05). Conclusion Coal dust exposure induces mitochondrial dysfunction and pulmonary fibrosis in vivo and in vitro via the PGC-1α-NRF1-TFAM pathway dysregulation. Targeting this pathway may mitigate coal dust-induced fibrosis by restoring mitochondrial biogenesis.
8.Mechanisms of Fufang Biejia Ruangan Pills Against Alcoholic Liver Disease via Regulating Liver-brain Dialogue Mediated by HMGB1-BDNF Axis
Yudong LIU ; Xiangying YAN ; Tao LI ; Chu ZHANG ; Bingbing CAI ; Zhaochen MA ; Na LIN ; Yanqiong ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(23):214-223
ObjectiveTo systematically and objectively characterize the pharmacological effects of Fufang Biejia Ruangan pills (FBRP) in the intervention of alcoholic liver disease (ALD) using acute and chronic ALD mouse models and to elucidate its molecular mechanisms. MethodFifty SPF-grade male BALB/c mice were randomly divided into the normal group, model group, and FBRP low-, medium-, and high-dose groups (9.6, 19.2, 38.4 mg·kg-1). Except for the normal group, the remaining groups were given 56° white wine by gavage to establish the acute ALD model, with samples collected after 4 weeks. Thirty SPF-grade male C57BL/6N mice were randomly divided into the normal group, model group, and FBRP medium-dose group (19.2 mg·kg-1). The chronic ALD mouse model was established using the Lieber-DeCarli method over a 10-week period. Inflammatory markers in liver tissues were assessed using hematoxylin-eosin (HE), Sirius Red, oil red O staining, and enzyme-linked immunosorbent assay (ELISA). Intoxication behaviors of each group were objectively evaluated through sobering-up time, net-catching, and pole-climbing tests. Further bioinformatics analyses based on clinical transcriptomic data were conducted to identify key targets and molecular mechanisms of FBRP in alleviating ALD through liver-brain dialogue, with experimental validation by ELISA, Western blot, and immunohistochemical staining. ResultCompared with the normal group, the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in liver tissues of mice in the acute and chronic ALD model groups were significantly increased (P<0.05). Compared with the model group, the levels of AST and ALT in liver tissue of mice in FBRP groups were significantly decreased (P<0.05). Compared with the normal group, the time of grasping the net and climbing the pole in the acute ALD model group was significantly decreased within 4 weeks (P<0.01). Compared with the model group, the grasping and climbing time of FBRP high dose groups increased significantly within 4 weeks (P<0.05). Compared with the normal group, the expression of high mobility group protein B1 (HMGB1) protein in liver tissue and prefrontal lobe tissue of mice in the chronic ALD model group was significantly increased (P<0.01). Compared with the model group, the expression of HMGB1 protein in FBRP medium dose group was significantly decreased (P<0.05,P<0.01). Compared with the normal group, the expression of brain-derived neurotrophic factor (BDNF) protein and the release of γ-aminobutyric acid (GABA) in the prefrontal cortex of the model group were significantly decreased (P<0.01). Compared with the model group, the expression of BDNF protein and the release of GABA in the FBRP medium dose group were significantly increased (P<0.05). ConclusionThis study revealed that FBRP improved key pathological changes in ALD by modulating liver-brain dialogue mediated by the HMGB1-BDNF axis. These findings provide experimental evidence for the clinical use of FBRP in treating ALD and offer new insights for the development of ALD therapeutic agents.
9.Correlation between surgery control preference and perceived social support of lung cancer patients
Fengyan MA ; Na REN ; Mengbai TIAN ; Yan LIU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(09):1288-1293
Objective To investigate the current status of control preference in the surgery of lung cancer patients and explore its correlation with perceived social support. Methods General information questionnaire, control preference scale, and perceived social support scale were used to investigate the lung cancer patients who underwent surgery in Beijing Cancer Hospital from February to May 2022. Results A total of 360 survey questionnaires were distributed, and 344 valid questionnaires were collected, with an effective rate of 95.6%. The expected participation style of patients was passive in 145 patients (42.2%), while the actual participation style was more inclined to be active in 154 (44.8%) patients. The compliance rate of patients’ expected and actual participation styles in the treatment control preference process was 61.9% (Kappa=0.437, P<0.001). The results of the analysis of influencing factors showed that the level of cultural education was an influencing factor in the actual participation of lung cancer patients in surgery control preference (P=0.029). The results of Spearman's correlation analysis showed that the actual participation of lung cancer patients in surgery control preference was positively associated with perceived social support (r=0.159, P<0.01), and its dimensions including family support (r=0.152, P<0.01), friend support (r=0.133, P<0.05), and other social support (r=0.142, P<0.01). Conclusion Patients’ expected control preference style is generally consistent with their actual control preference style, which is influenced by their cultural education and positively correlated with perceived social support. Medical and nursing staff should pay attention to the participation style of patients taking surgery decisions, develop decision aids according to different education levels, and develop individualized interventions from the perspective of improving social support initially, to improve patients’ treatment compliance and treatment care satisfaction.
10.Advance on research of Flash-RT technology
Xiangkun DAI ; Shaojuan WU ; Jinyuan WANG ; Wei YU ; Lehui DU ; Changxin YAN ; Shilei ZHANG ; Na MA ; Xiao LEI ; Baolin QU
China Medical Equipment 2024;21(1):2-8
At present,precise radiotherapy has been widely used through the development with many years,but the existing technique still is limited by the limitation of tolerance dose of normal tissues,which cannot achieve the optimal goal of treating tumor.Flash radiotherapy(Flash-RT)is one kind of radiotherapy technique that uses the beam with ultra-high dose rate(UHDR)to conduct irradiation,which can furthest treat tumors while significantly reduce radiation injury of normal tissues.But until now,the biological mechanism,key physical parameters and triggering mechanism of Flash-RT are still unclear,and its principle and clinical translational application are still in the stage of research.This review clarified the technological advance and clinical translational application of Flash-RT research through summarized the relevant research of Flash-RT.

Result Analysis
Print
Save
E-mail