1.Potential Toxicity of Traditional Chinese Medicine and Its Scientific Regulation
Ting WANG ; Can TU ; Lin ZHANG ; Zhaojuan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):1-9
In recent years, with the extensive application of traditional Chinese medicine (TCM) both domestically and internationally, safety concerns associated with TCM have been frequently reported. Notably, some TCM substances traditionally regarded as ''non-toxic'' have exhibited significant adverse reactions during clinical use, drawing substantial attention to TCM safety. This study first analyzed the risk factors contributing to the potential toxicity of TCM from perspectives such as drug properties, individual constitution, and clinical medication practices. Subsequently, it proposed research strategies and methodologies for investigating potential TCM toxicity: ① conduct studies under the guidance of TCM theory, adhering to the principle of diversity and unity. ② adopt an integrated research paradigm of ''originating from clinical practice-syndrome-based foundation-returning to clinical practice-serving supervision''. ③ implement a three-tier technical system of ''Mathematical modeling-high-throughput screening via liquid chromatography-mass spectrometry (LC-MS)-systems biology'' to systematically elucidate the causes, material basis, and mechanisms of toxicity. Finally, scientific regulatory recommendations for potential TCM toxicity are proposed: ① establish a multidimensional prevention and control system addressing drug properties, physical constitution factors, and clinical medication practices. ② address the impact of modern processing techniques on the safety of new TCM drugs. ③ strengthen the revision of standards for Chinese medicinal materials to ensure their safety. ④ account for disease-syndrome combination animal models and interspecies differences in safety assessment outcomes. This study aims to overcome critical challenges in TCM regulation by advancing evaluation through research and driving research through evaluation. By establishing a high-level scientific regulatory framework, it seeks to not only safeguard clinical medication safety but also propel the high-quality development of the TCM industry, thereby providing scientific support for the inheritance and innovative evolution of TCM.
2.Potential Toxicity of Traditional Chinese Medicine and Its Scientific Regulation
Ting WANG ; Can TU ; Lin ZHANG ; Zhaojuan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):1-9
In recent years, with the extensive application of traditional Chinese medicine (TCM) both domestically and internationally, safety concerns associated with TCM have been frequently reported. Notably, some TCM substances traditionally regarded as ''non-toxic'' have exhibited significant adverse reactions during clinical use, drawing substantial attention to TCM safety. This study first analyzed the risk factors contributing to the potential toxicity of TCM from perspectives such as drug properties, individual constitution, and clinical medication practices. Subsequently, it proposed research strategies and methodologies for investigating potential TCM toxicity: ① conduct studies under the guidance of TCM theory, adhering to the principle of diversity and unity. ② adopt an integrated research paradigm of ''originating from clinical practice-syndrome-based foundation-returning to clinical practice-serving supervision''. ③ implement a three-tier technical system of ''Mathematical modeling-high-throughput screening via liquid chromatography-mass spectrometry (LC-MS)-systems biology'' to systematically elucidate the causes, material basis, and mechanisms of toxicity. Finally, scientific regulatory recommendations for potential TCM toxicity are proposed: ① establish a multidimensional prevention and control system addressing drug properties, physical constitution factors, and clinical medication practices. ② address the impact of modern processing techniques on the safety of new TCM drugs. ③ strengthen the revision of standards for Chinese medicinal materials to ensure their safety. ④ account for disease-syndrome combination animal models and interspecies differences in safety assessment outcomes. This study aims to overcome critical challenges in TCM regulation by advancing evaluation through research and driving research through evaluation. By establishing a high-level scientific regulatory framework, it seeks to not only safeguard clinical medication safety but also propel the high-quality development of the TCM industry, thereby providing scientific support for the inheritance and innovative evolution of TCM.
3.Myocardial Metabolomics Reveals Mechanism of Shenfu Injection in Ameliorating Energy Metabolism Remodeling in Rat Model of Chronic Heart Failure
Xinyue NING ; Zhenyu ZHAO ; Mengna ZHANG ; Yang GUO ; Zhijia XIANG ; Kun LIAN ; Zhixi HU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):178-186
ObjectiveTo examine the influences of Shenfu injection on the endogenous metabolic byproducts in the myocardium of the rat model exhibiting chronic heart failure, thus deciphering the therapeutic mechanism of the Qi-reinforcing and Yang-warming method. MethodsSD rats were randomly allocated into a control group and a modeling group. Chronic heart failure with heart-Yang deficiency syndrome in rats was modeled by multi-point subcutaneous injection of isoproterenol, and the rats were fed for 14 days after modeling. The successfully modeled rats were randomized into model, Shenfu injection (6.0 mL·kg-1), and trimetazidine (10 mg·kg-1) groups and treated with corresponding agents for 15 days. The control group and the model group were injected with equal doses of normal saline, and the samples were collected after the intervention was completed. Cardiac color ultrasound was performed. Hematoxylin-eosin (HE) staining was used to observe histopathological morphology, and the serum level of N-terminal pro-brain natriuretic peptide (NT-proBNP) was assessed by enzyme-linked immunosorbent assay (ELISA). The mitochondrial morphological and structural changes of cardiomyocytes were observed by transmission electron microscopy, and the metabolic profiling was carried out by ultra high performance liquid chromatography-quantitative exactive-mass spectrometry (UHPLC-QE-MS). Differential metabolites were screened and identified by orthogonal partial least squares-discriminant analysis (OPLS-DA) and other methods, and then the MetaboAnalyst database was used for further screening. The relevant biological pathways were obtained through pathway enrichment analysis. The receiver operating characteristic (ROC) curve was established to evaluate the diagnostic value of each potential biomarker for myocardial injury and the evaluation value for drug efficacy. ResultsThe results of color ultrasound showed that Shenfu Injection improved the cardiac function indexes of model rats (P<0.05). The results of HE staining showed that Shenfu injection effectively alleviated the pathological phenomena such as myocardial tissue structure disorder and inflammatory cell infiltration in model rats. The results of ELISA showed that Shenfu injection effectively regulated the serum NT-proBNP level in the model rats. Transmission electron microscopy (TEM) showed that Shenfu injection effectively restored the mitochondrial morphological structure. The results of metabolomics showed that the metabolic phenotypes of myocardial samples presented markedly differences between groups. Nine differential metabolites could be significantly reversed in the Shenfu injection group, involving three metabolic pathways: pyruvate metabolism, histidine metabolism, and citric acid cycle (TCA cycle). The results of ROC analysis showed that the area under the curve (AUC) values of all metabolites were between 0.75 and 1.0, indicating that the differential metabolites had high diagnostic accuracy for myocardial injury, and the changes in their expression levels could be used as potential markers for efficacy evaluation. ConclusionShenfu injection significantly alleviated the damage of cardiac function, myocardium, and mitochondrial structure in the rat model of chronic heart failure with heart-Yang deficiency syndrome by ameliorating energy metabolism remodeling. Reinforcing Qi and warming Yang is a key method for treating chronic heart failure with heart-Yang deficiency syndrome.
4.Exploration of a new model for the construction of medical institution formulation platforms from the perspective of industry-university-research collaborative innovation theory
Kana LIN ; Anle SHEN ; Yejian WANG ; Yanqiong WANG ; Hao LI ; Yanfang GUO ; Youjun WANG ; Xinyan SUN
China Pharmacy 2026;37(2):137-141
OBJECTIVE To explore a model for constructing a platform for medical institution formulation and provide insights for promoting their development. METHODS By systematically reviewing the development status and challenges of medical institution preparations in China, and based on the theory of industry-university-research collaborative innovation, the organizational structure, collaborative processes, and safeguard mechanisms of the platform were designed. RESULTS & CONCLUSIONS Medical institution formulations in China mainly faced challenges such as weak research and development (R&D) capacity, uneven quality standards, and blocked transformation pathways. This study established a full-chain, whole- industry collaborative innovation network covering the government, medical institutions, universities/research institutes, pharmaceutical enterprises, and the market, forming a new “government-industry-university-research-application” five-in-one platform model for medical institution formulations. By establishing mechanisms such as multi-entity collaborative cooperation, full- chain intellectual property management, contribution-based benefit distribution, staged risk-sharing, and third-party evaluation, the model clarified the responsibilities and collaborative pathways of all parties. The new model highlights the whole-process transformation of clinical experience-based prescriptions, enabling precise alignment between clinical needs and technological R&D, as well as between preparation achievements and industrial transformation. While breaking down the barriers of traditional platform construction, it effectively achieves optimal resource allocation and complementary advantages, addresses problems emerging in the development of medical institution preparations, and provides reference value for the formulation of relevant systems.
5.Simultaneous TAVI and McKeown for esophageal cancer with severe aortic regurgitation: A case report
Liang CHENG ; Lulu LIU ; Xin XIAO ; Lin LIN ; Mei YANG ; Jingxiu FAN ; Hai YU ; Longqi CHEN ; Yingqiang GUO ; Yong YUAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):277-280
A 71-year-old male presented with esophageal cancer and severe aortic valve regurgitation. Treatment strategies for such patients are controversial. Considering the risks of cardiopulmonary bypass and potential esophageal cancer metastasis, we successfully performed transcatheter aortic valve implantation and minimally invasive three-incision thoracolaparoscopy combined with radical resection of esophageal cancer (McKeown) simultaneously in the elderly patient who did not require neoadjuvant treatment. This dual minimally invasive procedure took 6 hours and the patient recovered smoothly without any surgical complications.
6.Optimization and Mechanism Exploration of Tusizi Prescription for Ovarian Reserve Function Based on Uniform Design Method
Yuan LI ; Hanqian DU ; Jiashan LI ; Li GUO ; Zehui LI ; Na LIN ; Ying XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):53-62
ObjectiveTo optimize Tusizi prescription for ovarian reserve function based on the uniform design method combined with in vitro experiments and explore the underlying mechanisms of this prescription. MethodsThe uniform design method was adopted to design a 5-factor 11-level experiment on the water extract of Tusizi prescription. The cell-counting kit-8 (CCK-8) assay was employed to measure the viability of human ovarian granulosa cells (KGN cells) treated with Tusizi prescription extracts 1-11, and multivariate regression analysis was performed to determine the optimal herb ratio in this prescription. The potential targets of active ingredients in the prescription were retrieved from traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and encyclopedia of traditional Chinese medicine (ETCM). The common targets shared by Tusizi prescription and diminished ovarian reserve (DOR) were selected and imported into search tool for the retrieval of interacting genes/proteins (STRING) to construct a protein-protein interaction (PPI) network and into gene function annotation database (DAVID) for gene ontology (GO) analysis. The CCK-8 assay was used to measure the viability of ovarian germline stem cells treated with hyperoside. The CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, terminal-deoxynucleoitidyl transferase mediated nick-end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA) were employed to examine the proliferation, apoptosis, and estradiol (E2) secretion of KGN cells treated with the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design. On this basis, the optimal prescription composition for maximizing the effect on ovarian reserve function was determined and preliminary insights into the underlying mechanisms of this prescription were gained. ResultsA total of 147 common targets were obtained from 278 targets of Tusizi prescription and 1 721 targets of DOR. GO analysis revealed 194 biological processes, primarily involving cellular responses to exogenous compound stimuli, negative regulation of apoptotic process, and positive regulation of cell proliferation. It identified 84 cellular components, including cell membrane, mitochondria, and neuronal cell body, as well as 144 molecular functions such as enzyme binding, estrogen response element binding, and nuclear estrogen receptor binding. The multivariate regression analysis revealed that when Tusizi prescription was composed of Cuscutae Semen, Lycii Fructus, Dioscoreae Rhizoma, Poria, and Nelumbinis Semen in a ratio of 27∶30∶17∶12∶14, the water extract of Tusizi prescription had the best effect of enhancing the viability of KGN cells. CCK-8 results showed that compared with the normal group, the hyperoside group demonstrated increased viability of ovarian germline stem cells (P<0.01). The CCK-8, EdU, and ELISA results showed that compared with the normal group, the optimal prescription screened by uniform design and the water extract 11 of Tusizi prescription increased the proliferation and reduced the apoptosis of KGN cells (P<0.05, P<0.01). ELISA results showed that compared with the normal group, the water extract 11 of Tusizi prescription promoted the E2 secretion of KGN cells (P<0.05), while the optimal prescription screened by uniform design had no significant effect on the E2 secretion. ConclusionBoth the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 27∶30∶17∶12∶14) can improve the ovarian reserve function, and the former has better effect. Tusizi prescription can modulate biological processes (such as cell proliferation and apoptosis) and molecular functions (such as enzyme binding and estrogen response element binding) through active components like hyperoside to promote the proliferation and E2 secretion and inhibit the apoptosis of KGN cells, thereby protecting the ovarian reserve function.
7.Optimization and Mechanism Exploration of Tusizi Prescription for Ovarian Reserve Function Based on Uniform Design Method
Yuan LI ; Hanqian DU ; Jiashan LI ; Li GUO ; Zehui LI ; Na LIN ; Ying XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):53-62
ObjectiveTo optimize Tusizi prescription for ovarian reserve function based on the uniform design method combined with in vitro experiments and explore the underlying mechanisms of this prescription. MethodsThe uniform design method was adopted to design a 5-factor 11-level experiment on the water extract of Tusizi prescription. The cell-counting kit-8 (CCK-8) assay was employed to measure the viability of human ovarian granulosa cells (KGN cells) treated with Tusizi prescription extracts 1-11, and multivariate regression analysis was performed to determine the optimal herb ratio in this prescription. The potential targets of active ingredients in the prescription were retrieved from traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and encyclopedia of traditional Chinese medicine (ETCM). The common targets shared by Tusizi prescription and diminished ovarian reserve (DOR) were selected and imported into search tool for the retrieval of interacting genes/proteins (STRING) to construct a protein-protein interaction (PPI) network and into gene function annotation database (DAVID) for gene ontology (GO) analysis. The CCK-8 assay was used to measure the viability of ovarian germline stem cells treated with hyperoside. The CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, terminal-deoxynucleoitidyl transferase mediated nick-end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA) were employed to examine the proliferation, apoptosis, and estradiol (E2) secretion of KGN cells treated with the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design. On this basis, the optimal prescription composition for maximizing the effect on ovarian reserve function was determined and preliminary insights into the underlying mechanisms of this prescription were gained. ResultsA total of 147 common targets were obtained from 278 targets of Tusizi prescription and 1 721 targets of DOR. GO analysis revealed 194 biological processes, primarily involving cellular responses to exogenous compound stimuli, negative regulation of apoptotic process, and positive regulation of cell proliferation. It identified 84 cellular components, including cell membrane, mitochondria, and neuronal cell body, as well as 144 molecular functions such as enzyme binding, estrogen response element binding, and nuclear estrogen receptor binding. The multivariate regression analysis revealed that when Tusizi prescription was composed of Cuscutae Semen, Lycii Fructus, Dioscoreae Rhizoma, Poria, and Nelumbinis Semen in a ratio of 27∶30∶17∶12∶14, the water extract of Tusizi prescription had the best effect of enhancing the viability of KGN cells. CCK-8 results showed that compared with the normal group, the hyperoside group demonstrated increased viability of ovarian germline stem cells (P<0.01). The CCK-8, EdU, and ELISA results showed that compared with the normal group, the optimal prescription screened by uniform design and the water extract 11 of Tusizi prescription increased the proliferation and reduced the apoptosis of KGN cells (P<0.05, P<0.01). ELISA results showed that compared with the normal group, the water extract 11 of Tusizi prescription promoted the E2 secretion of KGN cells (P<0.05), while the optimal prescription screened by uniform design had no significant effect on the E2 secretion. ConclusionBoth the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 27∶30∶17∶12∶14) can improve the ovarian reserve function, and the former has better effect. Tusizi prescription can modulate biological processes (such as cell proliferation and apoptosis) and molecular functions (such as enzyme binding and estrogen response element binding) through active components like hyperoside to promote the proliferation and E2 secretion and inhibit the apoptosis of KGN cells, thereby protecting the ovarian reserve function.
8.Research progress of Yttrium-90 microsphere selective internal radiation therapy in downstaging and conversion of hepatocellular carcinoma
Licong LIANG ; Yuchan LIANG ; Wensou HUANG ; Yongjian GUO ; Jingjun HUANG ; Liteng LIN ; Mingyue CAI ; Kangshun ZHU
Chinese Journal of Clinical Medicine 2025;32(1):9-14
The incidence and mortality of hepatocellular carcinoma (HCC) in China are among the highest in the world, imposing a heavy social burden. Liver resection and liver transplantation are the primary radical treatments for HCC, although most patients are no longer able to meet the surgical requirements at initial diagnosis. Yttrium-90 microsphere selective internal radiation therapy (90Y-SIRT) has the advantages of shrinking tumors, enlarging residual liver, regressing portal vein tumor thrombus and improving the quality of life, which can be used for conversion, downstaging and bridging therapy for HCC before surgical treatment, enabling patients regain the chance of radical treatment and reducing the postoperative recurrence rate. This review focuses on the clinical application and progress of 90Y-SIRT in this field.
9.Effect and mechanism of Qingxue xiaozhi jiangtang formula on insulin resistance in rats with type 2 diabetes mellitus
Yuxin HONG ; Lei ZHANG ; Mingxue ZHOU ; Sinai LI ; Li LIN ; Meng ZHANG ; Zixuan GUO ; Weihong LIU
China Pharmacy 2025;36(1):24-29
OBJECTIVE To investigate the improvement effect and potential mechanism of Qingxue xiaozhi jiangtang formula on insulin resistance (IR) in type 2 diabetes mellitus (T2DM) rats. METHODS T2DM rat model was established by intraperitoneal injection of 30 mg/kg streptozotocin combined with high-fat and high-sugar diet. The rats were randomly divided into normal control group, model group, Qingxue xiaozhi jiangtang formula low-dose and high-dose groups (6.525, 13.05 g/kg, calculated by raw material) and metformin group (positive control, 0.18 g/kg), with 8 rats in each group. Administration groups were given relevant medicine intragastrically; normal control group and model group were given constant volume of normal saline intragastrically, once a day, for consecutive 6 weeks. Body mass and fasting blood glucose (FBG) were determined, and oral glucose tolerance test was conducted. Serum fasting insulin (FINS) level was measured to calculate the insulin resistance index (HOMA-IR) and insulin sensitivity index (ISI). Additionally, the level of serum lipids, liver function, oxidative stress indicators and inflammatory factors were assessed. The phosphorylation levels of kinase R-like endoplasmic reticulum kinase (PERK) and forkhead box O1 (FOXO1) protein in liver tissue of rats were determined. RESULTS Compared with model group, the body weight, ISI, the levels of high-density lipoprotein cholesterol and superoxide dismutase were increased significantly in Qingxue xiaozhi jiangtang formula high-dose group and metformin group (P<0.05); FBG, blood glucose level at 120 minutes of glucose loading, area under the curve of glucose, FINS, HOMA-IR, low-density lipoprotein cholesterol, total cholesterol, triglyceride, alanine transaminase, aspartate transaminase, alkaline phosphatase, malondialdehyde, interleukin-6, tumor necrosis factor-α, and C-reactive protein levels were significantly reduced (P< Δ0.05); the pathological damage of liver tissue had significantlyimproved, and the phosphorylation levels of PERK and FOXO1 proteins in liver tissue were significantly decreased (P<0.05). CONCLUSIONS Qingxue xiaozhi jiangtang formula can regulate glucose and lipid metabolism, inflammation factor and oxidative stress levels, and alleviate insulin resistance in T2DM rats. Its mechanism of action may be related to the inhibition of the PERK/FOXO1 signaling pathway.
10.Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis
Jian LIU ; Hongchun ZHANG ; Chengxiang WANG ; Hongsheng CUI ; Xia CUI ; Shunan ZHANG ; Daowen YANG ; Cuiling FENG ; Yubo GUO ; Zengtao SUN ; Huiyong ZHANG ; Guangxi LI ; Qing MIAO ; Sumei WANG ; Liqing SHI ; Hongjun YANG ; Ting LIU ; Fangbo ZHANG ; Sheng CHEN ; Wei CHEN ; Hai WANG ; Lin LIN ; Nini QU ; Lei WU ; Dengshan WU ; Yafeng LIU ; Wenyan ZHANG ; Yueying ZHANG ; Yongfen FAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):182-188
The Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis (GS/CACM 337-2023) was released by the China Association of Chinese Medicine on December 13th, 2023. This expert consensus was developed by experts in methodology, pharmacy, and Chinese medicine in strict accordance with the development requirements of the China Association of Chinese Medicine (CACM) and based on the latest medical evidence and the clinical medication experience of well-known experts in the fields of respiratory medicine (pulmonary diseases) and pediatrics. This expert consensus defines the application of Qinbaohong Zhike oral liquid in the treatment of cough and excessive sputum caused by phlegm-heat obstructing lung, acute bronchitis, and acute attack of chronic bronchitis from the aspects of applicable populations, efficacy evaluation, usage, dosage, drug combination, and safety. It is expected to guide the rational drug use in medical and health institutions, give full play to the unique value of Qinbaohong Zhike oral liquid, and vigorously promote the inheritance and innovation of Chinese patent medicines.

Result Analysis
Print
Save
E-mail