1.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
2.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
3.Identification of blood-entering components of Anshen Dropping Pills based on UPLC-Q-TOF-MS/MS combined with network pharmacology and evaluation of their anti-insomnia effects and mechanisms.
Xia-Xia REN ; Jin-Na YANG ; Xue-Jun LUO ; Hui-Ping LI ; Miao QIAO ; Wen-Jia WANG ; Yi HE ; Shui-Ping ZHOU ; Yun-Hui HU ; Rui-Ming LI
China Journal of Chinese Materia Medica 2025;50(7):1928-1937
This study identified blood-entering components of Anshen Dropping Pills and explored their anti-insomnia effects and mechanisms. The main blood-entering components of Anshen Dropping Pills were detected and identified by UPLC-Q-TOF-MS/MS. The rationality of the formula was assessed by using enrichment analysis based on the relationship between drugs and symptoms, and core targets of its active components were selected as the the potential anti-insomnia targets of Anshen Dropping Pills through network pharmacology analysis. Furthermore, protein-protein interaction(PPI) network, Gene Ontology(GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were performed on the core targets. An active component-core target network for Anshen Dropping Pills was constructed. Finally, the effects of low-, medium-, and high-dose groups of Anshen Dropping Pills on sleep episodes, sleep duration, and sleep latency in mice were measured by supraliminal and subliminal pentobarbital sodium experiments. Moreover, total scores of the Pittsburgh sleep quality index(PSQI) scale was used to evaluate the changes before and after the treatment with Anshen Dropping Pills in a clinical study. The enrichment analysis based on the relationship between drugs and symptoms verified the rationality of the Anshen Dropping Pills formula, and nine blood-entering components of Anshen Dropping Pills were identified by UPLC-Q-TOF-MS/MS. The network proximity revealed a significant correlation between eight components and insomnia, including magnoflorine, liquiritin, spinosin, quercitrin, jujuboside A, ginsenoside Rb_3, glycyrrhizic acid, and glycyrrhetinic acid. Network pharmacology analysis indicated that the major anti-insomnia pathways of Anshen Dropping Pills involved substance and energy metabolism, neuroprotection, immune system regulation, and endocrine regulation. Seven core genes related to insomnia were identified: APOE, ALB, BDNF, PPARG, INS, TP53, and TNF. In summary, Anshen Dropping Pills could increase sleep episodes, prolong sleep duration, and reduce sleep latency in mice. Clinical study results demonstrated that Anshen Dropping Pills could decrease total scores of PSQI scale. This study reveals the pharmacodynamic basis and potential multi-component, multi-target, and multi-pathway effects of Anshen Dropping Pills, suggesting that its anti-insomnia mechanisms may be associated with the regulation of insomnia-related signaling pathways. These findings offer a theoretical foundation for the clinical application of Anshen Dropping Pills.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Tandem Mass Spectrometry/methods*
;
Sleep Initiation and Maintenance Disorders/metabolism*
;
Mice
;
Network Pharmacology
;
Male
;
Chromatography, High Pressure Liquid
;
Humans
;
Protein Interaction Maps/drug effects*
;
Sleep/drug effects*
;
Female
;
Adult
4.Effect and mechanism of Bufei Decoction on improving Klebsiella pneumoniae pneumonia in rats by regulating IL-17 signaling pathway.
Li-Na HUANG ; Zheng-Ying QIU ; Xiang-Yi PAN ; Chen LIU ; Si-Fan LI ; Shao-Guang GE ; Xiong-Wei SHI ; Hao CAO ; Rui-Hua XIN ; Fang-di HU
China Journal of Chinese Materia Medica 2025;50(11):3097-3107
Based on the interleukin-17(IL-17) signaling pathway, this study explores the effect and mechanism of Bufei Decoction on Klebsiella pneumoniae pneumonia in rats. SD rats were randomly divided into the control group, model group, Bufei Decoction low-dose group(6.68 g·kg~(-1)·d~(-1)), Bufei Decoction high-dose group(13.36 g·kg~(-1)·d~(-1)), and dexamethasone group(1.04 mg·kg~(-1)·d~(-1)), with 10 rats in each group. A pneumonia model was established by tracheal drip injection of K. pneumoniae. After successful model establishment, the improvement in lung tissue damage was observed following drug administration. Core targets and signaling pathways were screened using transcriptomics techniques. Real-time fluorescence quantitative polymerase chain reaction was used to detect the mRNA expression of core targets interleukin-6(IL-6), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and chemokine CXC ligand 6(CXCL6). Western blot was used to assess key proteins in the IL-17 signaling pathway, including interleukin-17A(IL-17A), nuclear transcription factor-κB activator 1(Act1), tumor necrosis factor receptor-associated factor 6(TRAF6), and downstream phosphorylated p38 mitogen-activated protein kinase(p-p38 MAPK), and phosphorylated nuclear factor-κB p65(p-NF-κB p65). Apoptosis of lung tissue cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling(TUNEL). The results showed that, compared with the control group, the model group exhibited significant pathological damage in lung tissue. The mRNA expression of IL-6, IL-1β, TNF-α, and CXCL6, as well as the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly increased, and the number of apoptotic cells was notably higher, indicating successful model establishment. Compared with the model group, both low-and high-dose groups of Bufei Decoction showed reduced pathological damage in lung tissue. The mRNA expression levels of IL-6, IL-1β, TNF-α, and CXCL6, and the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly decreased, with a significant reduction in apoptotic cells in the high-dose group. In conclusion, Bufei Decoction can effectively improve lung tissue damage and reduce inflammation in rats with K. pneumoniae. The mechanism may involve the regulation of the IL-17 signaling pathway and the reduction of apoptosis.
Animals
;
Interleukin-17/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Klebsiella pneumoniae/physiology*
;
Klebsiella Infections/immunology*
;
Humans
;
Lung/drug effects*
5.Varicocele ligation with mobile phone microscope: Report of 5 cases and literature review.
Yan-Zhong LIU ; Chao LI ; Yu GAO ; Yu-Zhu LI ; Run ZHU ; Xue-Yuan XIANG ; Ying-Na HU ; Xin MA ; Chun-Yang WANG
National Journal of Andrology 2025;31(8):709-712
OBJECTIVE:
To investigate the feasibility of varicocele ligation with mobile phone microscope.
METHODS:
The high-performance mobile phone and mobile phone stand were combined to act as a mobile phone microscope. And the varicocele ligation was performed under the mobile phone microscope.
RESULTS:
All five patients successfully underwent varicocelectomy under the guidance of a mobile phone microscope. The average operation time was (112.8 ± 52.2)with ranged from 74.0 to 195.0 minutes. Three patients completed the follow-up after the operation with the proportion of improved sperm quality reaching 100.0% (3/3).
CONCLUSION
High- performance mobile phone microscope can be used for varicocele ligation.
Humans
;
Male
;
Ligation/methods*
;
Cell Phone
;
Adult
;
Varicocele/surgery*
;
Microscopy
;
Young Adult
6.Research progress in diagnosis and treatment of salivary gland tumors.
Guangyan YU ; Xin PENG ; Min GAO ; Peng YE ; Na GE ; Mengqi JIA ; Bingyu LI ; Zunan TANG ; Leihao HU ; Wenbo ZHANG
Journal of Peking University(Health Sciences) 2025;57(1):1-6
Salivary gland tumor is one of the most common tumors in oral and maxillofacial regions. The diagnosis and treatment of salivary gland tumors had been a clinical characteristic project in Peking University School and Hospital of Stomatology since long time ago. Here we introduced the research progress in diagnosis and treatment of salivary gland tumors during the past 10 years. Among 7 190 cases of salivary gland tumors treated in this institution, 4 654 cases (64.7%) were benign, and 2 536 (35.3%) were malignant, with benign ∶ malignant ratio of 1.84 ∶ 1. Parotid was the most common location, followed by minor salivary gland and submandibular gland, while sublingular gland tumor was seldom seen. The proportion of minor salivary gland tumor was relatively high. Among 1 874 cases with primary malignant tumors, the cases with T3 and stage Ⅲ accounted for only 9.6% and 10.3%, respectively, which indicated that there was shortcoming in the T classification and clinical stage formulated by Union for International Cancer Control (UICC), and further revision was required. The 5, 10, and 15 year survival rates of 1 637 cases with postoperative follow-up were 93.1%, 87.2% and 79.3%, respectively, which were much higher than those we reported 30 years ago. The improvement of treatment results was related to more widely used combined treatment with surgery and postoperative radiotherapy, and the increase in patients with early stage. Adenoid cystic carcinoma was the malignant tumor with high rate of distant metastasis. The 5 and 10 year survival rates of the patients with pulmonary metastasis were 76.2% and 51.8%, respectively, which indicated that the pulmonary metastatic carcinomas developed slowly. Recurrent rate of carcinoma ex pleomorphic adenoma was 46.7% after single treatment of sur-gery, while it decreased to 27.5% after combined theraphy with surgery and radiotherapy, indicating that postoperative radiotheraphy could reduce the recurrent rate effectively. The normal myoepithelial cells had the inhibiting role in the invasion and metastasis of carcinoma ex pleomorphic adenoma. The evaluation of integrity of myoepithelial cells surrounding the tumor mass is helpful to understand the invasiveness of the tumors. The new surgical modalities such as extracapsular resection and partial sialoadenectomy were used in treatment of benign tumors of parotid gland and submandibular gland with advantages of decreased tissue damage and preservation of glandular function. Application of digital surgical techniques such as mixed reality combined with surgical navigation and real-time three-dimensional holograms in the surgical treatment of parotid gland tumors showed the benifits of more safety and precision, and less tissue da-mage.
Humans
;
Salivary Gland Neoplasms/pathology*
;
Carcinoma, Adenoid Cystic/therapy*
;
Adenoma, Pleomorphic/therapy*
;
Neoplasm Staging
7.Discovery and proof-of-concept study of a novel highly selective sigma-1 receptor agonist for antipsychotic drug development.
Wanyu TANG ; Zhixue MA ; Bang LI ; Zhexiang YU ; Xiaobao ZHAO ; Huicui YANG ; Jian HU ; Sheng TIAN ; Linghan GU ; Jiaojiao CHEN ; Xing ZOU ; Qi WANG ; Fan CHEN ; Guangying LI ; Chaonan ZHENG ; Shuliu GAO ; Wenjing LIU ; Yue LI ; Wenhua ZHENG ; Mingmei WANG ; Na YE ; Xuechu ZHEN
Acta Pharmaceutica Sinica B 2025;15(10):5346-5365
Sigma-1 receptor (σ 1R) has become a focus point of drug discovery for central nervous system (CNS) diseases. A series of novel 1-phenylethan-1-one O-(2-aminoethyl) oxime derivatives were synthesized. In vitro biological evaluation led to the identification of 1a, 14a, 15d and 16d as the most high-affinity (K i < 4 nmol/L) and selective σ 1R agonists. Among these, 15d, the most metabolically stable derivative exhibited high selectivity for σ 1R in relation to σ 2R and 52 other human targets. In addition to low CYP450 inhibition and induction, 15d also exhibited high brain permeability and excellent oral bioavailability. Importantly, 15d demonstrated effective antipsychotic potency, particularly for alleviating negative symptoms and improving cognitive impairment in experimental animal models, both of which are major challenges for schizophrenia treatment. Moreover, 15d produced no significant extrapyramidal symptoms, exhibiting superior pharmacological profiles in relation to current antipsychotic drugs. Mechanistically, 15d inhibited GSK3β and enhanced prefrontal BDNF expression and excitatory synaptic transmission in pyramidal neurons. Collectively, these in vivo proof-of-concept findings provide substantial experimental evidence to demonstrate that modulating σ 1R represents a potential new therapeutic approach for schizophrenia. The novel chemical entity along with its favorable drug-like and pharmacological profile of 15d renders it a promising candidate for treating schizophrenia.
8.Strategy for cysteine-targeting covalent inhibitors screening using in-house database based LC-MS/MS and drug repurposing.
Xiaolan HU ; Jian-Lin WU ; Quan HE ; Zhi-Qi XIONG ; Na LI
Journal of Pharmaceutical Analysis 2025;15(3):101045-101045
Targeted covalent inhibitors, primarily targeting cysteine residues, have attracted great attention as potential drug candidates due to good potency and prolonged duration of action. However, their discovery is challenging. In this research, a database-assisted liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategy was developed to quickly discover potential cysteine-targeting compounds. First, compounds with potential reactive groups were selected and incubated with N-acetyl-cysteine in microsomes. And the precursor ions of possible cysteine-adducts were predicted based on covalent binding mechanisms to establish in-house database. Second, substrate-independent product ions produced from N-acetyl-cysteine moiety were selected. Third, multiple reaction monitoring scan was conducted to achieve sensitive screening for cysteine-targeting compounds. This strategy showed broad applicability, and covalent compounds with diverse structures were screened out, offering structural resources for covalent inhibitors development. Moreover, the screened compounds, norketamine and hydroxynorketamine, could modify synaptic transmission-related proteins in vivo, indicating their potential as covalent inhibitors. This experimental-based screening strategy provides a quick and reliable guidance for the design and discovery of covalent inhibitors.
9.Deciphering the therapeutic potential and mechanisms of Artemisia argyit essential oil on flagellum-mediated Salmonella infections.
Linlin DING ; Lei XU ; Na HU ; Jianfeng WANG ; Jiazhang QIU ; Qingjie LI ; Xuming DENG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(6):714-726
Salmonellosis represents a global epidemic, and the emergence of extensively drug-resistant (XDR) Salmonella and its sustained transmission worldwide constitutes a significant public health concern. Flagellum-mediated motility serves as a crucial virulence trait of Salmonella that guides the pathogen toward the epithelial surface, enhancing gut colonization. Artemisia argyit essential oil, a traditional herb extract, demonstrates efficacy in treating inflammation-related symptoms and diseases; however, its effects on flagellum assembly and expression mechanisms in anti-Salmonella activity remain inadequately explored. This study aimed to elucidate the mechanism by which Artemisia argyit essential oil addresses Salmonella infections. Network pharmacological analysis revealed that Traditional Chinese Medicine (TCM) Artemisia argyit exhibited anti-Salmonella infection potential and inhibited flagellum-dependent motility. The application of Artemisia argyit essential oil induced notable motility defects through the downregulation of flagellar and fimbriae expression. Moreover, it significantly reduced Salmonella-infected cell damage by interfering with flagellum-mediated Salmonella colonization. In vivo studies demonstrated that Artemisia argyit essential oil administration effectively alleviated Salmonella infection symptoms by reducing bacterial loads, inhibiting interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) production, and diminishing pathological injury. Gas chromatography-mass spectrometry (GC-MS) analysis identified forty-three compounds in Artemisia argyit essential oil, with their corresponding targets and active ingredients predicted. Investigation of an in vivo model of Salmonella infection using the active ingredient demonstrated that alpha-cedrene ameliorated Salmonella infection. These findings suggest the potential application of Artemisia argyit essential oil in controlling Salmonella, the predominant food-borne pathogen.
Artemisia/chemistry*
;
Oils, Volatile/chemistry*
;
Animals
;
Flagella/drug effects*
;
Salmonella Infections/microbiology*
;
Humans
;
Mice
;
Anti-Bacterial Agents/pharmacology*
;
Salmonella/pathogenicity*
10.TXN expression in pancreatic cancer and its clinical signifi-cance
Lin-Hai XU ; Mei-Na LI ; Xiao HU
Chinese Journal of Current Advances in General Surgery 2024;27(5):353-358
Objective:Investigate the expression of thioredoxin(TXN)in pancreatic cancer and its impact on the proliferation,invasion,migration,and apoptosis of pancreatic cancer cells.Methods:By collecting pan-cancer and TCGA pancreatic cancer transcriptome and clinical data,the expression levels of the TXN gene family were analyzed.The expression levels of TXN in cancer tissues,adjacent tissues,and different cell lines were detected by fluorescence quantitative PCR(RT-qPCR)and Western blotting.The expression of the TXN gene in Panc-1 and BxPC-3 pancre-atic cancer cells was inhibited using small interfering RNA(siRNA),and control experiments were conducted with Panc-1 and BxPC-3 cells with unblocked TXN gene expression to explore the ef-fects of TXN on the proliferation,migration,invasion,and apoptosis of these two types of cells.Transcriptional data and survival outcome data were used to divide TXN expression into two groups based on the median value,and survival curves of the high and low TXN expression groups were plotted.Results:In pancreatic cancer tissues and cells,the expression level of TXN was signifi-cantly higher than that in adjacent tissues and normal cells(P<0.05).After inhibiting the expression of TXN in pancreatic cancer cells,the proliferation rate,invasion cell number,and healing rate of pancreatic cancer cells with low TXN expression were lower than those of the control group,and their apoptosis rate was significantly higher than that of normal pancreatic cancer cells(P<0.05).The higher the expression level of TXN in the tumors of pancreatic cancer patients,the shorter their survival time(P<0.05).Conclusion:TXN can enhance the proliferation,migration,and invasion ability of pancreatic cancer cells and weaken the degree of cell apoptosis;the higher the expression level of TXN in pancreatic cancer tissues,the worse the prognosis.

Result Analysis
Print
Save
E-mail