1.Mesenchymal stem cell-derived exosomes as a new drug carrier for the treatment of spinal cord injury: A review
Lin-Fei CHENG ; Chao-Qun YOU ; Cheng PENG ; Jia-Ji REN ; Kai GUO ; Tie-Long LIU
Chinese Journal of Traumatology 2024;27(3):134-146
Spinal cord injury (SCI) is a devastating traumatic disease seriously impairing the quality of life in patients. Expectations to allow the hopeless central nervous system to repair itself after injury are unfeasible. Developing new approaches to regenerate the central nervous system is still the priority. Exosomes derived from mesenchymal stem cells (MSC-Exo) have been proven to robustly quench the inflammatory response or oxidative stress and curb neuronal apoptosis and autophagy following SCI, which are the key processes to rescue damaged spinal cord neurons and restore their functions. Nonetheless, MSC-Exo in SCI received scant attention. In this review, we reviewed our previous work and other studies to summarize the roles of MSC-Exo in SCI and its underlying mechanisms. Furthermore, we also focus on the application of exosomes as drug carrier in SCI. In particular, it combs the advantages of exosomes as a drug carrier for SCI, imaging advantages, drug types, loading methods, etc., which provides the latest progress for exosomes in the treatment of SCI, especially drug carrier.
2.Report on Cardiac Gross Pathologic Measurements of Sudden Cardiac Death in Adults.
Jia-Yi WU ; You-Jia YU ; Kai LI ; Xin YIN ; Han-Ting FAN ; Rong LI ; Zhi-Wei ZHANG ; Wei TANG ; Hui-Jie HUANG ; Feng CHEN
Journal of Forensic Medicine 2023;39(1):1-6
OBJECTIVES:
To analyze the gross pathological data of sudden cardiac death (SCD) with different causes, to provide data support for the identification of sudden cardiac death with unknown causes.
METHODS:
A total of 167 adult SCD cases in the archive of the Forensic Expertise Institute of Nanjing Medical University from 2010 to 2020 were collected. The gross pathological data of SCD cases were summarized and the characteristics of different causes of death were statistically analyzed.
RESULTS:
The ratio of male to female SCD cases was 3.4∶1. Coronary heart disease was the leading cause of SCD, and mainly distributed in people over 40 years old. SCD caused by myocarditis was mainly distributed in young people and the mean age of death was (34.00±9.55) years. By analyzing the differences in cardiac pathological parameters of SCD with different causes, it was found that the aortic valve circumference was significantly dilated in the SCD caused by aortic aneurysm or dissection (P<0.05). The heart weight of SCD caused by aortic aneurysm or dissection and combined factors was greater, and both pulmonary and tricuspid valvular rings were dilated in the SCD caused by combined factors in adult males (P<0.05).
CONCLUSIONS
Various gross pathological measures of SCD with different causes are different, which has reference value in the cause of death identification of SCD.
Humans
;
Adult
;
Male
;
Female
;
Adolescent
;
Young Adult
;
Death, Sudden, Cardiac/pathology*
;
Coronary Disease
;
Heart
;
Forensic Medicine
;
Autopsy
3.Safety and efficacy of the early administration of levosimendan in patients with acute non-ST-segment elevation myocardial infarction and elevated NT-proBNP levels: An Early Management Strategy of Acute Heart Failure (EMS-AHF).
Feng XU ; Yuan BIAN ; Guo Qiang ZHANG ; Lu Yao GAO ; Yu Fa LIU ; Tong Xiang LIU ; Gang LI ; Rui Xue SONG ; Li Jun SU ; Yan Ju ZHOU ; Jia Yu CUI ; Xian Liang YAN ; Fang Ming GUO ; Huan Yi ZHANG ; Qing Hui LI ; Min ZHAO ; Li Kun MA ; Bei An YOU ; Ge WANG ; Li KONG ; Jian Liang MA ; Xin Fu ZHOU ; Ze Long CHANG ; Zhen Yu TANG ; Dan Yu YU ; Kai CHENG ; Li XUE ; Xiao LI ; Jiao Jiao PANG ; Jia Li WANG ; Hai Tao ZHANG ; Xue Zhong YU ; Yu Guo CHEN
Chinese Journal of Internal Medicine 2023;62(4):374-383
Objectives: To investigated the safety and efficacy of treating patients with acute non-ST-segment elevation myocardial infarction (NSTEMI) and elevated levels of N-terminal pro-hormone B-type natriuretic peptide (NT-proBNP) with levosimendan within 24 hours of first medical contact (FMC). Methods: This multicenter, open-label, block-randomized controlled trial (NCT03189901) investigated the safety and efficacy of levosimendan as an early management strategy of acute heart failure (EMS-AHF) for patients with NSTEMI and high NT-proBNP levels. This study included 255 patients with NSTEMI and elevated NT-proBNP levels, including 142 males and 113 females with a median age of 65 (58-70) years, and were admitted in the emergency or outpatient departments at 14 medical centers in China between October 2017 and October 2021. The patients were randomly divided into a levosimendan group (n=129) and a control group (n=126). The primary outcome measure was NT-proBNP levels on day 3 of treatment and changes in the NT-proBNP levels from baseline on day 5 after randomization. The secondary outcome measures included the proportion of patients with more than 30% reduction in NT-proBNP levels from baseline, major adverse cardiovascular events (MACE) during hospitalization and at 6 months after hospitalization, safety during the treatment, and health economics indices. The measurement data parameters between groups were compared using the t-test or the non-parametric test. The count data parameters were compared between groups using the χ² test. Results: On day 3, the NT-proBNP levels in the levosimendan group were lower than the control group but were statistically insignificant [866 (455, 1 960) vs. 1 118 (459, 2 417) ng/L, Z=-1.25,P=0.21]. However, on day 5, changes in the NT-proBNP levels from baseline in the levosimendan group were significantly higher than the control group [67.6% (33.8%,82.5%)vs.54.8% (7.3%,77.9%), Z=-2.14, P=0.03]. There were no significant differences in the proportion of patients with more than 30% reduction in the NT-proBNP levels on day 5 between the levosimendan and the control groups [77.5% (100/129) vs. 69.0% (87/126), χ²=2.34, P=0.13]. Furthermore, incidences of MACE did not show any significant differences between the two groups during hospitalization [4.7% (6/129) vs. 7.1% (9/126), χ²=0.72, P=0.40] and at 6 months [14.7% (19/129) vs. 12.7% (16/126), χ²=0.22, P=0.64]. Four cardiac deaths were reported in the control group during hospitalization [0 (0/129) vs. 3.2% (4/126), P=0.06]. However, 6-month survival rates were comparable between the two groups (log-rank test, P=0.18). Moreover, adverse events or serious adverse events such as shock, ventricular fibrillation, and ventricular tachycardia were not reported in both the groups during levosimendan treatment (days 0-1). The total cost of hospitalization [34 591.00(15 527.46,59 324.80) vs. 37 144.65(16 066.90,63 919.00)yuan, Z=-0.26, P=0.80] and the total length of hospitalization [9 (8, 12) vs. 10 (7, 13) days, Z=0.72, P=0.72] were lower for patients in the levosimendan group compared to those in the control group, but did not show statistically significant differences. Conclusions: Early administration of levosimendan reduced NT-proBNP levels in NSTEMI patients with elevated NT-proBNP and did not increase the total cost and length of hospitalization, but did not significantly improve MACE during hospitalization or at 6 months.
Male
;
Female
;
Humans
;
Aged
;
Natriuretic Peptide, Brain
;
Simendan/therapeutic use*
;
Non-ST Elevated Myocardial Infarction
;
Heart Failure/drug therapy*
;
Peptide Fragments
;
Arrhythmias, Cardiac
;
Biomarkers
;
Prognosis
4.Effects of praziquantel isomers on the proliferation and activation of the LX-2 human hepatic stellate cell line
Xuan YUAN ; Su-yang ZHANG ; Jia-kai YAO ; Yun-tian XING ; Guo-li QU ; You-sheng LIANG ; Jian-rong DAI
Chinese Journal of Schistosomiasis Control 2022;34(1):75-80
Objective To compare the effects of levo-praziquantel (L-PZQ) and dextro-praziquantel (D-PZQ) on the proliferation and activation of the human hepatic stellate cell line LX-2 in vitro. Methods LX-2 cells were stimulated with transforming growth factor-β (TGF-β). LX-2 cell proliferation was measured using the CCK-8 assay after 24 h stimulation with 0 to 50 μg/mL concentrations of praziquantel, and the gene and protein expression of type Ⅰ collagen (collagen Ⅰ), type Ⅲ collagen (collagen Ⅲ) and α-smooth muscle actin (α-SMA) was quantified in LX-2 cells using quantitative real-time PCR (qPCR) and Western blotting assays 24 h and 48 h following stimulation with 15 μg/mL praziquantel to detect LX-2 cell activation. Results There were significant differences in the survival rate of LX-2 cells between L-PZQ and D-PZQ treatments at all concentrations (F = 6.119 and 79.180, both P values < 0.05). Either L-PZQ or D-PZQ at a concentration of < 30 μg/mL showed no remarkableeffectsonthe LX-2 cell proliferation (both P values > 0.05), and L-PZQ at a concentration of > 50 μg/mL and D-PZQ at a concentration of > 40 μg/mL inhibited the LX-2 cell proliferation (both P values < 0.05), while D-PZQ at concentrations of 40 μg/mL and 50 μg/mL showed greater inhibition on LX-2 cell proliferation than L-PZQ (t = 3.419 and 8.776, both P values < 0.05). There were significant differences in the collagen Ⅰ, collagen Ⅲ and α-SMA expression in LX-2 cells at both transcriptional (F = 21.55, 79.99 and 46.70, all P values < 0.05) and translational levels (F = 20.12, 30.29 and 32.93, all P values < 0.05) among the blank control group, TGF-β stimulation group, L-PZQ treatment group and D-PZQ treatment group. L-PZQ treatment resulted in remarkable inhibition on collagen Ⅲ and α-SMA gene expression in LX-2 cells (both P values < 0.05); however, the treatment showed no remarkable inhibition collagen Ⅰ gene expression or collagen Ⅰ, collagen Ⅲ or α-SMA protein expression in LX-2 cells (all P values > 0.05). In addition, D-PZQ treatment resulted in significant inhibition on collagen Ⅰ, collagen Ⅲ and α-SMA expression in LX-2 cells at both translational and transcriptional levels (all P values < 0.05), and D-PZQ showed higher inhibition on collagen Ⅰ, collagen Ⅲ and α-SMA gene expression in LX-2 cells than L-PZQ (all P values < 0.05). Conclusions Both L-PZQ and D-PZQ inhibit the proliferation and activation of LX-2 cells, and D-PZQ shows a higher inhibitory activity than L-PZQ.
5.Construction and Application of YOLOv3-Based Diatom Identification Model of Scanning Electron Microscope Images.
Ji CHEN ; Xiao-Rong LIU ; Jia-Wen YANG ; Ye-Qiu CHEN ; Cheng WANG ; Meng-Yuan OU ; Jia-Yi WU ; You-Jia YU ; Kai LI ; Peng CHEN ; Feng CHEN
Journal of Forensic Medicine 2022;38(1):46-52
OBJECTIVES:
To construct a YOLOv3-based model for diatom identification in scanning electron microscope images, explore the application performance in practical cases and discuss the advantages of this model.
METHODS:
A total of 25 000 scanning electron microscopy images were collected at 1 500× as an initial image set, and input into the YOLOv3 network to train the identification model after experts' annotation and image processing. Diatom scanning electron microscopy images of lung, liver and kidney tissues taken from 8 drowning cases were identified by this model under the threshold of 0.4, 0.6 and 0.8 respectively, and were also identified by experts manually. The application performance of this model was evaluated through the recognition speed, recall rate and precision rate.
RESULTS:
The mean average precision of the model in the validation set and test set was 94.8% and 94.3%, respectively, and the average recall rate was 81.2% and 81.5%, respectively. The recognition speed of the model is more than 9 times faster than that of manual recognition. Under the threshold of 0.4, the mean recall rate and precision rate of diatoms in lung tissues were 89.6% and 87.8%, respectively. The overall recall rate in liver and kidney tissues was 100% and the precision rate was less than 5%. As the threshold increased, the recall rate in all tissues decreased and the precision rate increased. The F1 score of the model in lung tissues decreased with the increase of threshold, while the F1 score in liver and kidney tissues with the increase of threshold.
CONCLUSIONS
The YOLOv3-based diatom electron microscope images automatic identification model works at a rapid speed and shows high recall rates in all tissues and high precision rates in lung tissues under an appropriate threshold. The identification model greatly reduces the workload of manual recognition, and has a good application prospect.
Diatoms
;
Drowning/diagnosis*
;
Humans
;
Liver/diagnostic imaging*
;
Lung/diagnostic imaging*
;
Microscopy, Electron, Scanning
6.Analysis of the Genome Sequence of Strain GiC-126 of Gloeostereum incarnatum with Genetic Linkage Map
Wan-Zhu JIANG ; Fang-Jie YAO ; Ming FANG ; Li-Xin LU ; You-Min ZHANG ; Peng WANG ; Jing-Jing MENG ; Jia LU ; Xiao-Xu MA ; Qi HE ; Kai-Sheng SHAO ; Asif Ali KHAN ; Yun-Hui WEI
Mycobiology 2021;49(4):406-420
Gloeostereum incarnatum has edible and medicinal value and was first cultivated and domesticated in China. We sequenced the G. incarnatum monokaryotic strain GiC-126 on an Illumina HiSeq X Ten system and obtained a 34.52-Mb genome assembly sequence that encoded 16,895 predicted genes. We combined the GiC-126 genome with the published genome of G. incarnatum strain CCMJ2665 to construct a genetic linkage map (GiC-126 genome) that had 10 linkage groups (LGs), and the 15 assembly sequences of CCMJ2665 were integrated into 8 LGs. We identified 1912 simple sequence repeat (SSR) loci and detected 700 genes containing 768 SSRs in the genome; 65 and 100 of them were annotated with gene ontology (GO) terms and KEGG pathways, respectively. Carbohydrate-active enzymes (CAZymes) were identified in 20 fungal genomes and annotated; among them, 144 CAZymes were annotated in the GiC-126 genome. The A mating-type locus (MAT-A) of G. incarnatum was located on scaffold885 at 38.9 cM of LG1 and was flanked by two homeodomain (HD1) genes, mip and beta-fg. Fourteen segregation distortion markers were detected in the genetic linkage map, all of which were skewed toward the parent GiC-126. They formed three segregation distortion regions (SDR1–SDR3), and 22 predictive genes were found in scaffold1920 where three segregation distortion markers were located in SDR1. In this study, we corrected and updated the genomic information of G. incarnatum. Our results will provide a theoretical basis for fine gene mapping, functional gene cloning, and genetic breeding the follow-up of G. incarnatum.
7.Analysis of the Genome Sequence of Strain GiC-126 of Gloeostereum incarnatum with Genetic Linkage Map
Wan-Zhu JIANG ; Fang-Jie YAO ; Ming FANG ; Li-Xin LU ; You-Min ZHANG ; Peng WANG ; Jing-Jing MENG ; Jia LU ; Xiao-Xu MA ; Qi HE ; Kai-Sheng SHAO ; Asif Ali KHAN ; Yun-Hui WEI
Mycobiology 2021;49(4):406-420
Gloeostereum incarnatum has edible and medicinal value and was first cultivated and domesticated in China. We sequenced the G. incarnatum monokaryotic strain GiC-126 on an Illumina HiSeq X Ten system and obtained a 34.52-Mb genome assembly sequence that encoded 16,895 predicted genes. We combined the GiC-126 genome with the published genome of G. incarnatum strain CCMJ2665 to construct a genetic linkage map (GiC-126 genome) that had 10 linkage groups (LGs), and the 15 assembly sequences of CCMJ2665 were integrated into 8 LGs. We identified 1912 simple sequence repeat (SSR) loci and detected 700 genes containing 768 SSRs in the genome; 65 and 100 of them were annotated with gene ontology (GO) terms and KEGG pathways, respectively. Carbohydrate-active enzymes (CAZymes) were identified in 20 fungal genomes and annotated; among them, 144 CAZymes were annotated in the GiC-126 genome. The A mating-type locus (MAT-A) of G. incarnatum was located on scaffold885 at 38.9 cM of LG1 and was flanked by two homeodomain (HD1) genes, mip and beta-fg. Fourteen segregation distortion markers were detected in the genetic linkage map, all of which were skewed toward the parent GiC-126. They formed three segregation distortion regions (SDR1–SDR3), and 22 predictive genes were found in scaffold1920 where three segregation distortion markers were located in SDR1. In this study, we corrected and updated the genomic information of G. incarnatum. Our results will provide a theoretical basis for fine gene mapping, functional gene cloning, and genetic breeding the follow-up of G. incarnatum.
8.A multi-center retrospective study of perioperative chemotherapy for gastric cancer based on real-world data.
Xue Wei DING ; Zhi Chao ZHENG ; Qun ZHAO ; Gang ZHAI ; Han LIANG ; Xin WU ; Zheng Gang ZHU ; Hai Jiang WANG ; Qing Si HE ; Xian Li HE ; Yi An DU ; Lu Chuan CHEN ; Ya Wei HUA ; Chang Ming HUANG ; Ying Wei XUE ; Ye ZHOU ; Yan Bing ZHOU ; Dan WU ; Xue Dong FANG ; You Guo DAI ; Hong Wei ZHANG ; Jia Qing CAO ; Le Ping LI ; Jie CHAI ; Kai Xiong TAO ; Guo Li LI ; Zhi Gang JIE ; Jie GE ; Zhong Fa XU ; Wen Bin ZHANG ; Qi Yun LI ; Ping ZHAO ; Zhi Qiang MA ; Zhi Long YAN ; Guo Liang ZHENG ; Yang YAN ; Xiao Long TANG ; Xiang ZHOU
Chinese Journal of Gastrointestinal Surgery 2021;24(5):403-412
Objective: To explore the effect of perioperative chemotherapy on the prognosis of gastric cancer patients under real-world condition. Methods: A retrospective cohort study was carried out. Real world data of gastric cancer patients receiving perioperative chemotherapy and surgery + adjuvant chemotherapy in 33 domestic hospitals from January 1, 2014 to January 31, 2016 were collected. Inclusion criteria: (1) gastric adenocarcinoma was confirmed by histopathology, and clinical stage was cT2-4aN0-3M0 (AJCC 8th edition); (2) D2 radical gastric cancer surgery was performed; (3) at least one cycle of neoadjuvant chemotherapy (NAC) was completed; (4) at least 4 cycles of adjuvant chemotherapy (AC) [SOX (S-1+oxaliplatin) or CapeOX (capecitabine + oxaliplatin)] were completed. Exclusion criteria: (1) complicated with other malignant tumors; (2) radiotherapy received; (3) patients with incomplete data. The enrolled patients who received neoadjuvant chemotherapy and adjuvant chemotherapy were included in the perioperative chemotherapy group, and those who received only postoperative adjuvant chemotherapy were included in the surgery + adjuvant chemotherapy group. Propensity score matching (PSM) method was used to control selection bias. The primary outcome were overall survival (OS) and progression-free survival (PFS) after PSM. OS was defined as the time from the first neoadjuvant chemotherapy (operation + adjuvant chemotherapy group: from the date of operation) to the last effective follow-up or death. PFS was defined as the time from the first neoadjuvant chemotherapy (operation + adjuvant chemotherapy group: from the date of operation) to the first imaging diagnosis of tumor progression or death. The Kaplan-Meier method was used to estimate the survival rate, and the Cox proportional hazards model was used to evaluate the independent effect of perioperative chemo therapy on OS and PFS. Results: 2 045 cases were included, including 1 293 cases in the surgery+adjuvant chemotherapy group and 752 cases in the perioperative chemotherapy group. After PSM, 492 pairs were included in the analysis. There were no statistically significant differences in gender, age, body mass index, tumor stage before treatment, and tumor location between the two groups (all P>0.05). Compared with the surgery + adjuvant chemotherapy group, patients in the perioperative chemotherapy group had higher proportion of total gastrectomy (χ(2)=40.526, P<0.001), smaller maximum tumor diameter (t=3.969, P<0.001), less number of metastatic lymph nodes (t=1.343, P<0.001), lower ratio of vessel invasion (χ(2)=11.897, P=0.001) and nerve invasion (χ(2)=12.338, P<0.001). In the perioperative chemotherapy group and surgery + adjuvant chemotherapy group, 24 cases (4.9%) and 17 cases (3.4%) developed postoperative complications, respectively, and no significant difference was found between two groups (χ(2)=0.815, P=0.367). The median OS of the perioperative chemotherapy group was longer than that of the surgery + adjuvant chemotherapy group (65 months vs. 45 months, HR: 0.74, 95% CI: 0.62-0.89, P=0.001); the median PFS of the perioperative chemotherapy group was also longer than that of the surgery+adjuvant chemotherapy group (56 months vs. 36 months, HR=0.72, 95% CI:0.61-0.85, P<0.001). The forest plot results of subgroup analysis showed that both men and women could benefit from perioperative chemotherapy (all P<0.05); patients over 45 years of age (P<0.05) and with normal body mass (P<0.01) could benefit significantly; patients with cTNM stage II and III presented a trend of benefit or could benefit significantly (P<0.05); patients with signet ring cell carcinoma benefited little (P>0.05); tumors in the gastric body and gastric antrum benefited more significantly (P<0.05). Conclusion: Perioperative chemotherapy can improve the prognosis of gastric cancer patients.
Chemotherapy, Adjuvant
;
Female
;
Gastrectomy
;
Humans
;
Male
;
Neoadjuvant Therapy
;
Neoplasm Staging
;
Prognosis
;
Retrospective Studies
;
Stomach Neoplasms/surgery*
9. The inflammatory pseudotumor formed after metal-on-metal hip arthroplasty
Jie YUAN ; Jia YOU ; Yanlin WAN ; Kai SUN ; Wenxue JIANG
Chinese Journal of Orthopaedics 2020;40(3):186-192
Due to its advantages of low wear, high stability and flexibility, the new generation metal-on-metal hip prosthesis is favored by many patients with hip diseases, especially young patients. However, in recent years, several studies have indicated that adverse reactions to metal debris (ARMD) caused the formation of inflammatory pseudotumor, which ultimately led to a higher revision rate after metal-on-metal hip arthroplasty. This aroused the widespread concern from doctors and patients. Moreover, revision surgery for metal-on-metal hip arthroplasty in the setting of inflammatory pseudotumor is faced with a great risk of failure because of the large defects of bone and surrounding soft tissue and difficulty in removing the original prosthesis and the fixing of the modified prosthesis. Therefore, the use of such products is restricted with caution in their choice. We summarized the recent developments in the research in the risk factors, diagnosis and treatment of inflammatory pseudotumor after metal-on-metal hip arthroplasty. The risk factors for the formation of inflammatory pseudotumor around the hip prosthesis mainly include the increase of metal ion concentration, the position of prosthesis implantation and the patient's own factors. The diagnosis mainly depends on physical examination, imaging examination, laboratory examination, arthroscopy and histological examination. The treatment strategies for clinical symptomatic and asymptomatic patients are also varies. Through the detailed analysis, evaluation and summary of the above contents, we may provide guidance for the selection of hip prosthesis, and lay the foundation for further exploration of the mechanism of inflammatory pseudotumor caused by ARMD.
10.Apatinib Combined with Local Irradiation Leads to Systemic TumorControl via Reversal of Immunosuppressive Tumor Microenvironmentin Lung Cancer
Li-jun LIANG ; Chen-xi HU ; Yi-xuan WEN ; Xiao-wei GENG ; Ting CHEN ; Guo-qing GU ; Lei WANG ; You-you XIA ; Yong LIU ; Jia-yan FEI ; Jie DONG ; Feng-hua ZHAO ; Yiliyar AHONGJIANG ; Kai-yuan HUI ; Xiao-dong JIANG
Cancer Research and Treatment 2020;52(2):406-418
Purpose:
This study aimed to investigate the potential systemic antitumor effects of stereotactic ablativeradiotherapy (SABR) and apatinib (a novel vascular endothelial growth factor receptor2 inhibitor) via reversing the immunosuppressive tumor microenvironment for lung carcinoma.
Materials and Methods:
Lewis lung cancer cells were injected into C57BL/6 mice in the left hindlimb (primary tumor;irradiated) and in the right flank (secondary tumor; nonirradiated). When both tumors grewto the touchable size, mice were randomly divided into eight treatment groups. These groupsreceived normal saline or three distinct doses of apatinib (50 mg/kg, 150 mg/kg, and 200mg/kg) daily for 7 days, in combination with a single dose of 15 Gy radiotherapy or not tothe primary tumor. The further tumor growth/regression of mice were followed andobserved.
Results:
For the single 15 Gy modality, tumor growth delay could only be observed at the primarytumor. When combining SABR and apatinib 200 mg/kg, significant retardation of both primaryand secondary tumor growth could be observed, indicated an abscopal effect wasinduced. Mechanism analysis suggested that programmed death-ligand 1 expressionincreased with SABR was counteract by additional apatinib therapy. Furthermore, whenapatinib was combined with SABR, the composition of immune cells could be changed.More importantly, this two-pronged approach evoked tumor antigen–specific immune responsesand the mice were resistant to another tumor rechallenge, finally, long-term survivalwas improved.
Conclusion
Our results suggested that the tumor microenvironment could be managed with apatinib,which was effective in eliciting an abscopal effect induced by SABR.

Result Analysis
Print
Save
E-mail