1.Rhodiolae Crenulatae Radix et Rhizoma protects brain microvascular endothelial cells from ischemia and hypoxia injury by regulating PI3K/AKT/GSK3β pathway.
Li TANG ; Qiu-Yue YANG ; Hong-Fa CHENG ; Ya-Hui XIE ; Qiu-Xia ZHANG
China Journal of Chinese Materia Medica 2025;50(11):3127-3136
This study elucidates the mechanism of Rhodiolae Crenulatae Radix et Rhizoma(RCRR) in protecting brain microvascular endothelial cells from oxygen-glucose deprivation(OGD) injury and reveals the modern pharmacological mechanism of RCRR's traditional use in nourishing Qi and promoting blood circulation to protect endothelial cells. The scratch assay was employed to assess the migratory capacity of endothelial cells. Immunofluorescence and Western blot techniques were employed to assess the protein expression of tight junction proteins zonula occludens-1(ZO-1), occludin, claudin-5, and proteins of the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)/glycogen synthase kinase-3beta(GSK3β) pathway. The results demonstrated that 63 bioactive components and 125 potential core targets of RCRR were identified from the ETCM, TCMBank, and SwissTargetPrediction databases, as well as from the literature. A total of 1 708 brain microvascular endothelial cell-related targets were identified from the GeneCards and OMIM databases, and 52 targets were obtained by intersecting drug components with cell targets. The protein-protein interaction(PPI) network analysis revealed that AKT1, epidermal growth factor receptor(EGFR), matrix metalloproteinase 9(MMP9), estrogen receptor 1(ESR1), proto-oncogene tyrosine-protein kinase(SRC), peroxisome proliferator-activated receptor gamma(PPARG), GSK3β, and matrix metalloproteinase 2(MMP2) were considered hub genes. The KEGG enrichment analysis identified the PI3K/AKT pathway as the primary signaling pathway. Cell experiments demonstrated that RCRR-containing serum could enhance the migratory capacity of brain microvascular endothelial cells and the expression of tight junction proteins following OGD injury, which may be associated with the downregulation of the PI3K/AKT/GSK3β pathway. This study elucidates the pharmacological mechanism of RCRR in protecting brain microvascular endothelial cells through network pharmacology, characterized by multiple components and targets. These findings were validated through in vitro experiments and provide important ideas and references for further research into the molecular mechanisms of RCRR in protecting brain microvascular endothelial cells.
Endothelial Cells/cytology*
;
Glycogen Synthase Kinase 3 beta/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction/drug effects*
;
Brain/metabolism*
;
Humans
;
Animals
;
Rhizome/chemistry*
;
Microvessels/metabolism*
;
Brain Ischemia/drug therapy*
2.Application of active glucose monitoring in the perioperative period of gastrointestinal endoscopy in children with glycogen storage disease type Ⅰb.
Jing YANG ; Hao-Tian WU ; Ni MA ; Jia-Xing WU ; Min YANG
Chinese Journal of Contemporary Pediatrics 2025;27(8):923-928
OBJECTIVES:
To investigate the role of active glucose monitoring in preventing hypoglycemia during the perioperative period of gastrointestinal endoscopy in children with glycogen storage disease type Ⅰb (GSD-Ⅰb).
METHODS:
A retrospective analysis was performed for the clinical data of children with GSD-Ⅰb who were diagnosed and treated in Guangdong Provincial People's Hospital from June 2021 to August 2024. The effect of active glucose monitoring on hypoglycemic episodes during the perioperative period of gastrointestinal endoscopy was analyzed.
RESULTS:
A total of 14 children with GSD-Ⅰb were included, among whom there were 7 boys and 7 girls, with a mean age of 10.0 years. Among 34 hospitalizations, there were 15 cases of hypoglycemic episodes (44%), among which 6 symptomatic cases (1 case with blood glucose level of 1.6 mmol/L and 5 cases with blood glucose level of <1.1 mmol/L) occurred without active monitoring, while 9 asymptomatic cases (with blood glucose level of 1.2-3.9 mmol/L) were detected by active monitoring. The predisposing factors for hypoglycemic episodes included preoperative fasting (5 cases, 33%), delayed feeding (7 cases, 47%), vomiting (2 cases, 13%), and parental omission (1 case, 7%). Two children experienced two hypoglycemic episodes during the same period of hospitalization, and no child experienced subjective symptoms prior to hypoglycemic episodes. Treatment methods included nasogastric glucose administration (1 case, 7%), intravenous injection of glucose (14 cases, 93%), and continuous glucose infusion (4 cases, 27%). Blood glucose returned to 3.5-6.9 mmol/L within 10 minutes after intervention and remained normal after dietary resumption.
CONCLUSIONS
Active glucose monitoring during the perioperative period of gastrointestinal endoscopy can help to achieve early detection of hypoglycemic states in children with GSD-Ⅰb, prevent hypoglycemic episodes, and enhance precise diagnosis and treatment.
Humans
;
Female
;
Male
;
Child
;
Retrospective Studies
;
Blood Glucose/analysis*
;
Hypoglycemia/etiology*
;
Glycogen Storage Disease Type I/blood*
;
Endoscopy, Gastrointestinal
;
Perioperative Period
;
Child, Preschool
;
Adolescent
3.Efficacy and safety of empagliflozin in the treatment of glycogen storage disease-associated inflammatory bowel disease.
Dan-Xia LIANG ; Hao-Tian WU ; Jing YANG ; Min YANG
Chinese Journal of Contemporary Pediatrics 2025;27(8):929-935
OBJECTIVES:
To investigate the efficacy and safety of empagliflozin in patients with glycogen storage disease (GSD)-associated inflammatory bowel disease (IBD).
METHODS:
A cross-sectional study was conducted, enrolling 25 patients with GSD-associated IBD who received empagliflozin treatment. General data, details of empagliflozin use, and adverse events were collected. Clinical symptoms and biochemical parameters before and after empagliflozin therapy were compared.
RESULTS:
Twenty-five patients with GSD-associated IBD were included, with a median age at diagnosis of 0.7 years, and a mean age at initiation of empagliflozin therapy of (11 ± 6) years. The initial dose of empagliflozin was (0.30 ± 0.13) mg/(kg·d), with a maintenance dose of (0.40 ± 0.21) mg/(kg·d), and a treatment duration of (34 ± 6) months. Seventy-eight percent (18/23) of patients' parents reported that empagliflozin therapy reduced the frequency of infections and oral ulcers, and increased neutrophil counts. Clinically, the number of patients with anorexia decreased from 12 to 5 after treatment, and 30% showed improved appetite (P<0.05). The numbers of patients with diarrhea, mucus/bloody stools, perianal disease, and oral ulcers decreased from 19, 9, 11, and 21 before treatment to 7, 1, 0, and 10 after treatment, respectively (P<0.05). Laboratory findings showed that absolute neutrophil counts increased, while platelet counts, lactate, and uric acid levels decreased significantly after empagliflozin treatment (P<0.05). Adverse reactions occurred in 7 patients (28%) during empagliflozin treatment. Two cases occurred in the treatment initiation phase, presenting as hypotension or profuse sweating with dehydration, along with urinary tract infections (UTIs); empagliflozin was discontinued in both cases. During the maintenance phase, 3 cases of UTIs and 2 cases of hypoglycemia (one with profuse sweating) were reported.
CONCLUSIONS
Empagliflozin therapy can increase neutrophil counts, reduce the incidence of infections and oral ulcers, alleviate diarrhea and abdominal pain, improve appetite, and ameliorate platelet count, lactate, and uric acid levels in patients with GSD-associated IBD, demonstrating significant clinical benefit. UTIs, hypoglycemia, hypotension, profuse sweating, and dehydration may be potential adverse reactions associated with empagliflozin therapy.
Humans
;
Benzhydryl Compounds/adverse effects*
;
Male
;
Female
;
Glucosides/adverse effects*
;
Inflammatory Bowel Diseases/etiology*
;
Child
;
Child, Preschool
;
Cross-Sectional Studies
;
Adolescent
;
Glycogen Storage Disease/drug therapy*
;
Infant
4.Triple-Target Inhibition of Cholinesterase, Amyloid Aggregation, and GSK3β to Ameliorate Cognitive Deficits and Neuropathology in the Triple-Transgenic Mouse Model of Alzheimer's Disease.
Junqiu HE ; Shan SUN ; Hongfeng WANG ; Zheng YING ; Kin Yip TAM
Neuroscience Bulletin 2025;41(5):821-836
Alzheimer's disease (AD) poses one of the most urgent medical challenges in the 21st century as it affects millions of people. Unfortunately, the etiopathogenesis of AD is not yet fully understood and the current pharmacotherapy options are somewhat limited. Here, we report a novel inhibitor, Compound 44, for targeting cholinesterases, amyloid-β (Aβ) aggregation, and glycogen synthase kinase 3β (GSK-3β) simultaneously with the aim of achieving symptomatic relief and disease modification in AD therapy. We found that Compound 44 had good inhibitory effects on all intended targets with IC50s of submicromolar or better, significant neuroprotective effects in cell models, and beneficial improvement of cognitive deficits in the triple transgenic AD (3 × Tg AD) mouse model. Moreover, we showed that Compound 44 acts as an autophagy regulator by inducing nuclear translocation of transcription factor EB through GSK-3β inhibition, enhancing the biogenesis of lysosomes and elevating autophagic flux, thus ameliorating the amyloid burden and tauopathy, as well as mitigating the disease phenotype. Our results suggest that triple-target inhibition via Compound 44 could be a promising strategy that may lead to the development of effective therapeutic approaches for AD.
Animals
;
Alzheimer Disease/genetics*
;
Mice, Transgenic
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Disease Models, Animal
;
Mice
;
Amyloid beta-Peptides/metabolism*
;
Cholinesterase Inhibitors/therapeutic use*
;
Humans
;
Autophagy/drug effects*
;
Cognitive Dysfunction/pathology*
;
Neuroprotective Agents/pharmacology*
6.The mechanism of GSK-3β/CREB signaling pathway regulating macrophage pyroptosis and participating in the occurrence and development of diabetic foot ulcer.
Hao HE ; Yanli YANG ; Li ZHANG
Chinese Journal of Cellular and Molecular Immunology 2024;40(12):1083-1088
Objective To investigate the role and possible mechanism of glycogen synthase kinase-3 beta (GSK-3β)/cAMP response element binding protein (CREB) signaling pathway in regulating macrophage pyroptosis in the pathogenesis and development of diabetic foot ulcer (DFU). Methods Thirty rats were randomly divided into control group, DFU group and GSK-3β inhibited group, with 10 rats in each group. Fasting blood glucose (FBG) was detected by dynamic blood glucose detector. The wound healing of each group was observed and recorded. The histopathologic changes of the wound were detected by HE staining. The level of wound fibrosis was detected by Masson staining. The protein levels of GSK-3β, CREB, gasdermin E (GSDME) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in wound tissue were detected by Western blotting. The co-expression of F4/80, GSDME and NLRP3 in wound tissue was detected by immunofluorescence staining. The serum levels of IL-1β and IL-18 were detected by ELISA. Results Compared with the control group, FBG in DFU group was increased. Compared with DFU group, FBG in GSK-3β inhibition group was decreased. The wound healing rate of rats in the inhibited GSK-3β group was higher than that in the DFU group from day 3 to day 14, and the difference was significant on day 14. Therefore, samples from day 14 were used in the follow-up experiment. Compared with the control group, the wound tissue of rats in DFU group was significantly damaged with collagen deposition defect, and the expressions of GSK-3β, CREB and apoptosis-related proteins GSDME and NLRP3 were increased, and the co-expressions of F4/80 and GSDME, F4/80 and NLRP3 were increased. Serum levels of IL-1β and IL-18 were increased. Compared with DFU group, most of the wound tissues of rats in GSK-3β group were healed. Collagen deposition at the fracture was increased. The expressions of GSK-3β, CREB and GSDME, NLRP3 were decreased. The expression levels of F4/80 and GSDME were reduced, along with a decrease in the co-expression of F4/80 and NLRP3. Additionally, there was a reduction in serum concentrations of IL-1β and IL-18. Conclusion GSK-3β/CREB signaling pathway and macrophage pyroptosis are significantly up-regulated in DFU rats. Inhibition of this pathway can promote DFU healing and down-regulate macrophage pyroptosis level.
Animals
;
Pyroptosis
;
Diabetic Foot/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Signal Transduction
;
Male
;
Rats
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Macrophages/metabolism*
;
Rats, Sprague-Dawley
;
Wound Healing
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Interleukin-1beta/metabolism*
7.Infant glycogen storage disease type Ⅳ: a clinicopathological and genetic characteristics analysis of five cases.
Chinese Journal of Pathology 2023;52(12):1255-1260
Objective: To investigate the clinical pathology and gene mutation characteristics of patients with glycogen storage disease type Ⅳ (GSD Ⅳ). Methods: The clinical data, liver histopathology and ultrastructural morphology, and gene sequencing results of 5 GSD Ⅳ cases diagnosed in the Children's Hospital Affiliated to Shanghai Jiaotong University School of Medicine and the Children's Hospital of Fudan University from January 2015 to February 2022 were collected and analyzed retrospectively. Results: Among the 5 cases, 3 were male and 2 were female, ranging in age from 4 months to 1 year and 9 months. The clinical manifestations included fever, hepatosplenomegaly, liver insufficiency, growth retardation and hypotonia. Four cases had liver biopsy showing ground-glass-like changes in hepatocytes with intracytoplasmic inclusion bodies and varying degrees of fibrosis. Liver electron microscopy in 2 cases showed that the level of glycogen increased to varying degrees, and the cytoplasm was filled with low electron density substances. Genetic testing revealed that 3 cases had compound heterozygous variants in GBE1 gene; 1 case had a single pathogenic variant in GBE1 gene; and 1 case was deceased with no genetic testing, but each parent was tested for a heterozygous variant in the GBE1 gene. A total of 9 GBE1 gene mutations were detected, 3 of which were reported mutations and 6 novel mutations. One case died of liver cirrhosis, and 1 case underwent autologous liver transplantation. After transplantation, the liver function basically returned to normal, and the growth and development improved; the other 3 cases were managed through diet control and symptomatic treatment. Conclusions: CSD Ⅳ is an extremely rare inherited metabolic disease caused by GBE1 gene mutation, often presenting with hepatic and neuromuscular disorders, with heterogeneous clinical manifestations. The diagnosis mainly depends on histopathology and a pedigree gene analysis.
Infant
;
Child
;
Humans
;
Male
;
Female
;
Glycogen Storage Disease Type IV/pathology*
;
Retrospective Studies
;
China
;
Mutation
;
Genetic Testing/methods*
8.Clinical characteristics of Danon disease.
Wu Wan WANG ; Yuan Yuan ZHU ; Wei WU ; Da Chun ZHAO ; Xue LIN ; Li Gang FANG ; Shu Yang ZHANG
Chinese Journal of Cardiology 2023;51(1):51-57
Objective: To review the clinical data of 7 patients with Danon disease and analyze their clinical characteristics. Methods: The medical records of 7 patients with Danon disease, who were hospitalized in Peking Union Medical College Hospital of Chinese Academy of Medical Sciences from April 2008 to July 2021, were reviewed and summarized, of which 6 cases were diagnosed as Danon disease by lysosomal-associated membrane protein-2 (LAMP-2) gene mutation detection and 1 case was diagnosed by clinicopathological features. Clinical manifestations, biochemical indexes, electrocardiogram, echocardiography, skeletal muscle and myocardial biopsy and gene detection results were analyzed, and patients received clinical follow-up after discharge. Results: Six patients were male and average age was (15.4±3.5) years and the average follow-up time was (27.7±17.0) months. The main clinical manifestations were myocardial hypertrophy (6/7), decreased myodynamia (2/7) and poor academic performance (3/7). Electrocardiogram features included pre-excitation syndrome (6/7) and left ventricular hypertrophy (7/7). Echocardiography examination evidenced myocardial hypertrophy (6/7), and left ventricular dilatation and systolic dysfunction during the disease course (1/7). The results of skeletal muscle biopsy in 6 patients were consistent with autophagy vacuolar myopathy. Subendocardial myocardial biopsy was performed in 3 patients, and a large amount of glycogen deposition with autophagosome formation was found in cardiomyocytes. LAMP-2 gene was detected in 6 patients, and missense mutations were found in all these patients. During the follow-up period, implantable cardioverter defibrillator implantation was performed in 1 patient because of high atrioventricular block 4 years after diagnosis, and there was no death or hospitalization for cardiovascular events in the other patients. Conclusion: The main clinical manifestations of Danon disease are cardiomyopathy, myopathy and mental retardation. Pre-excitation syndrome is a common electrocardiographic manifestation. Autophagy vacuoles can be seen in skeletal muscle and myocardial pathological biopsies. LAMP-2 gene mutation analysis is helpful in the diagnose of this disease.
Adolescent
;
Child
;
Female
;
Humans
;
Male
;
Cardiomyopathies/etiology*
;
Glycogen Storage Disease Type IIb/complications*
;
Hypertrophy, Left Ventricular/etiology*
;
Lysosomal-Associated Membrane Protein 2/genetics*
;
Pre-Excitation Syndromes/genetics*
9.Therapeutic Mechanism of Kai Xin San on Alzheimer's Disease Based on Network Pharmacology and Experimental Validation.
Kan WANG ; Rong YANG ; Tuan-Tuan CHEN ; Mei-Rong QIN ; Ping WANG ; Ming-Wang KONG
Chinese journal of integrative medicine 2023;29(5):413-423
OBJECTIVE:
To explore the specific pharmacological molecular mechanisms of Kai Xin San (KXS) on treating Alzheimer's disease (AD) based on network pharmacology and experimental validation.
METHODS:
The chemical compounds of KXS and their corresponding targets were screened using the Encyclopedia of Traditional Chinese Medicine (ETCM) database. AD-related target proteins were obtained from MalaCards database and DisGeNET databases. Key compounds and targets were identified from the compound-target-disease network and protein-protein interaction (PPI) network analysis. Functional enrichment analysis predicted the potential key signaling pathways involved in the treatment of AD with KXS. The binding affinities between key ingredients and targets were further verified using molecular docking. Finally, the predicted key signaling pathway was validated experimentally. Positioning navigation and space search experiments were conducted to evaluate the cognitive improvement effect of KXS on AD rats. Western blot was used to further examine and investigate the expression of the key target proteins related to the predicted pathway.
RESULTS:
In total, 38 active compounds and 469 corresponding targets of KXS were screened, and 264 target proteins associated with AD were identified. The compound-target-disease and PPI networks identified key active ingredients and protein targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested a potential effect of KXS in the treatment of AD via the amyloid beta (A β)-glycogen synthase kinase-3 beta (GSK3 β)-Tau pathway. Molecular docking revealed a high binding affinity between the key ingredients and targets. In vivo, KXS treatment significantly improved cognitive deficits in AD rats induced by Aβ1-42, decreased the levels of Aβ, p-GSK3β, p-Tau and cyclin-dependent kinase 5, and increased the expressions of protein phosphatase 1 alpha (PP1A) and PP2A (P<0.05 or P<0.01).
CONCLUSION
KXS exerted neuroprotective effects by regulating the Aβ -GSK3β-Tau signaling pathway, which provides novel insights into the therapeutic mechanism of KXS and a feasible pharmacological strategy for the treatment of AD.
Rats
;
Animals
;
Alzheimer Disease/drug therapy*
;
Amyloid beta-Peptides
;
Glycogen Synthase Kinase 3 beta
;
Network Pharmacology
;
Molecular Docking Simulation
;
Glycogen Synthase Kinase 3/therapeutic use*
;
Drugs, Chinese Herbal/therapeutic use*
10.Baicalin Ameliorates Corticosterone-Induced Depression by Promoting Neurodevelopment of Hippocampal via mTOR/GSK3β Pathway.
Zhe WANG ; Ya-Ting CHENG ; Ye LU ; Guo-Qiang SUN ; Lin PEI
Chinese journal of integrative medicine 2023;29(5):405-412
OBJECTIVE:
To investigate the role of hippocampal neurodevelopment in the antidepressant effect of baicalin.
METHODS:
Forty male Institute of Cancer Research mice were divided into control, corticosterone (CORT, 40 mg/kg), CORT+baicalin-L (25 mg/kg), CORT+baicalin-H (50 mg/kg), and CORT+fluoxetine (10 mg/kg) groups according to a random number table. An animal model of depression was established by chronic CORT exposure. Behavioral tests were used to assess the reliability of depression model and the antidepressant effect of baicalin. In addition, Nissl staining and immunofluorescence were used to evaluate the effect of baicalin on hippocampal neurodevelopment in mice. The protein and mRNA expression levels of neurodevelopment-related factors were detected by Western blot analysis and real-time polymerase chain reaction, respectively.
RESULTS:
Baicalin significantly ameliorated the depressive-like behavior of mice resulting from CORT exposure and promoted the development of dentate gyrus in hippocampus, thereby reversing the depressive-like pathological changes in hippocampal neurons caused by CORT neurotoxicity. Moreover, baicalin significantly decreased the protein and mRNA expression levels of glycogen synthase kinase 3β (GSK3β), and upregulated the expression levels of cell cycle protein D1, p-mammalian target of rapamycin (mTOR), doublecortin, and brain-derived neurotrophic factor (all P<0.01). There were no significant differences between baicalin and fluoxetine groups (P>0.05).
CONCLUSION
Baicalin can promote the development of hippocampal neurons via mTOR/GSK3β signaling pathway, thus protect mice against CORT-induced neurotoxicity and play an antidepressant role.
Male
;
Animals
;
Mice
;
Corticosterone
;
Fluoxetine/metabolism*
;
Depression/chemically induced*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Reproducibility of Results
;
Antidepressive Agents/pharmacology*
;
Hippocampus
;
TOR Serine-Threonine Kinases/metabolism*
;
RNA, Messenger/genetics*
;
Behavior, Animal
;
Disease Models, Animal
;
Mammals/metabolism*

Result Analysis
Print
Save
E-mail