1.Expression of β-glucosidase An-bgl3 from Aspergillus niger for conversion of scopolin.
Kunpeng YU ; Cheng PENG ; Yanling LIN ; Lijun LI ; Hui NI ; Qingbiao LI
Chinese Journal of Biotechnology 2023;39(3):1232-1246
Scopoletin is a coumarin compound with various biological activities including detumescence and analgesic, insecticidal, antibacterial and acaricidal effects. However, interference with scopolin and other components often leads to difficulties in purification of scopoletin with low extraction rates from plant resource. In this paper, heterologous expression of the gene encoding β-glucosidase An-bgl3 derived from Aspergillus niger were carried out. The expression product was purified and characterized with further structure-activity relationship between it and β-glucosidase analyzed. Subsequently, its ability for transforming scopolin from plant extract was studied. The results showed that the specific activity of the purified β-glucosidase An-bgl3 was 15.22 IU/mg, the apparent molecular weight was about 120 kDa. The optimum reaction temperature and pH were 55 ℃ and 4.0, respectively. Moreover, 10 mmol/L metal ions Fe2+ and Mn2+ increased the enzyme activity by 1.74-fold and 1.20-fold, respectively. A 10 mmol/L solution containing Tween-20, Tween-80 and Triton X-100 all inhibited the enzyme activity by 30%. The enzyme showed affinity towards scopolin and tolerated 10% methanol and 10% ethanol solution, respectively. The enzyme specifically hydrolyzed scopolin into scopoletin from the extract of Erycibe obtusifolia Benth with a 47.8% increase of scopoletin. This demonstrated that the β-glucosidase An-bgl3 from A. niger shows specificity on scopolin with good activities, thus providing an alternative method for increasing the extraction efficiency of scopoletin from plant material.
Aspergillus niger/genetics*
;
beta-Glucosidase/chemistry*
;
Scopoletin
;
Polysorbates
;
Coumarins
2.Construction of flocculation selective vector and expression of beta-glucosidase gene in Saccharomyces cerevisiae.
Xiao-Lin LIU ; Peng HE ; Da-Jun LU ; An SHEN ; Ning JIANG
Chinese Journal of Biotechnology 2005;21(1):167-170
Selective markers used in yeast vector for gene manipulation were usually drug resistance or autotrophy. Unfortunately, drug resistance selective marker requires drug sensitive host and most industrial strains were not autotrophy. In this paper, flocculation gene (FLO1) from Saccharomyces cerevisiae ABXL-1D was amplified by PCR, sequenced and cloned to construct an expression vector. The new vector was easy to manipulate and suitable for broad host of yeasts without either autotrophy or drugs. beta-glucosidase gene from Bacillus polymyxa was cloned with the vector and expressed in Saccharomyces cerevisiae. The specific activity of beta-glucosidase of the recombinant yeast cell-free extract was 3.91 u/mg protein. The residue glucose of the recombinant yeast was considerably reduced in mixed fermentation of glucose and cellobiose. It should be favorable for ethanol fermentation when utilize lignocellulosic biomass as raw material.
Bacillus
;
enzymology
;
genetics
;
Flocculation
;
Genetic Vectors
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Saccharomyces cerevisiae
;
genetics
;
metabolism
;
beta-Glucosidase
;
biosynthesis
;
genetics
3.Construction of an ethanologenic Escherichia coli strain expressing beta-glucosidase.
Yao ZHANG ; Zichen LUO ; Qiuqiang GAO ; Jie BAO
Chinese Journal of Biotechnology 2013;29(9):1254-1267
Constructing ethanologenic strains with cellulose activity is important to achieve consolidated bioprocessing of lignocellulose for ethanol production. In this study, we integrated the pyruvate decarboxylase gene pdc and alcohol dehydrogenase gene adhB from Zymomonas mobilis ZM4 into Escherichia coli JM109 by Red recombination method to generatea recombinant strain E. coli P81 that could produce ethanol from glucose. Abeta-glucosidase gene bglB from Bacillus polymyxa 1.794 was cloned into the recombinant E. coli P81 and beta-glucosidase was expressed to give a new recombinant strain E. coli P81 (pUC19-bglB) with dual functions of cellobiose degradation and ethanol production. The extracellular beta-glucosidaseactivity was 84.78 mU/mL broth and the extracellular cellobiase activity of E. coli P81 (pUC19-bglB) was 32.32 mU/mL broth. E. coli P81 (pUC19-bglB) fermented cellobiose to ethanol with a yield of 55.8% of the theoretical value, and when glucose and cellobiose were co-fermented, the ethanol yield reached 46.5% of thetheoretical value. The construction of consolidated bioprocessing strain opens the possibility to convert cellobiose to ethanol in a single bioprocess.
Bacterial Secretion Systems
;
Cellulose
;
metabolism
;
Escherichia coli
;
genetics
;
metabolism
;
Ethanol
;
metabolism
;
Fermentation
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
beta-Glucosidase
;
biosynthesis
;
genetics
4.Expression, purification and enzymatic characterization of Bacillus polymyxa beta-glucosidase gene( bglA ) in Escherichia coli.
Yun ZHAO ; Wei-Feng LIU ; Ai-Jun MAO ; Ning JIANG ; Zhi-Yang DONG
Chinese Journal of Biotechnology 2004;20(5):741-744
The beta-glucosidase encoding gene bglA was cloned from Bacillus polymyxa 1.794. The bglA gene was inserted in expression vector pET28a(+) and transformed into Escherichia coli BL21 (DE3), finally the recombinant strain BL1979 was obtained. Induced by IPTG, the expression P-glucosidase activity reached to 24.7 IU/mL. The optimum temperature and optimum pH of the recombinant expression P-glucosidase in BL1979 were 37 degrees C and 7.0 respectively,the purity can reach to 92.7%. Analysis of the fusion protein by nondenaturing gradient gel electrophoresis, we found the fusion protein exists in dimmer, tetramer,hexamer and octamer, they all have hydrolase activity.
Bacillus
;
enzymology
;
Escherichia coli
;
genetics
;
Plasmids
;
Recombinant Proteins
;
biosynthesis
;
isolation & purification
;
beta-Glucosidase
;
genetics
;
isolation & purification
;
metabolism
5.Heterologous expression of a novel β-glucosidase BglD2 and its application in polydatin-hydrolyzing.
Cheng HE ; Yan WU ; Chunyu MENG ; Yazhong XIAO ; Zemin FANG ; Wei FANG
Chinese Journal of Biotechnology 2021;37(2):580-592
A novel β-glucosidase BglD2 with glucose and ethanol tolerant properties was screened and cloned from the deep-sea bacterium Bacillus sp. D1. The application potential of BglD2 toward polydatin-hydrolyzing was also evaluated. BglD2 exhibited the maximal β-glucosidase activity at 45 °C and pH 6.5. BglD2 maintained approximately 50% of its origin activity after incubation at 30 °C and pH 6.5 for 20 h. BglD2 could hydrolyze a variety of substrates containing β (1→3), β (1→4), and β (1→6) bonds. The activity of β-glucosidase was enhanced to 2.0 fold and 2.3 fold by 100 mmol/L glucose and 150 mmol/L xylose, respectively. BglD2 possessed ethanol-stimulated and -tolerant properties. At 30 °C, the activity of BglD2 enhanced to 1.2 fold in the presence of 10% ethanol and even remained 60% in 25% ethanol. BglD2 could hydrolyze polydatin to produce resveratrol. At 35 °C, BglD2 hydrolyzed 86% polydatin after incubation for 2 h. Thus, BglD2 possessed glucose and ethanol tolerant properties and can be used as the potential candidate of catalyst for the production of resveratrol from polydatin.
Enzyme Stability
;
Glucose
;
Glucosides/pharmacology*
;
Hydrogen-Ion Concentration
;
Stilbenes/pharmacology*
;
Substrate Specificity
;
Temperature
;
Xylose
;
beta-Glucosidase/genetics*
6.Protoplast mutagenesis for improving beta-glucosidase production of Aspergillus niger.
Chunli WANG ; Gaihong WU ; Chang CHEN ; Shulin CHEN
Chinese Journal of Biotechnology 2009;25(12):1921-1926
The aims of this research were to isolate a Aspergillus niger strain with higher beta-glucosidase activity. We utilized the beta-glucosidase producing strain Aspergillus niger CGMCC 3.316 as the original strain to first obtain a mutant 3-3M through ultraviolet irradiation. Then we studied the conditions of protoplast release and regeneration for strain 3-3M. We treated the protoplasts of strain 3-3M via ultraviolet irradiation and obtained another isolated mutant 60B-3D. The strain 60B-3D showed much higher beta-glucosidase production than the original strain and 3-3M strain. The beta-glucosidase activity of strain 60B-3D was 23.4 IU/mL, with an improvement of 39% compared with the original strain, and 23% compared with strain 3-3M. We also studied the fermentation process of strain 60B-3D, and compared it with the original strain and strain 3-3M. We found the strain 60B-3D exhibited an improvement in xylanase production. The comparison results also showed that the strain 60B-3D secreted more protein. These results were beneficial for producing beta-glucosidase through this productive mutant.
Amino Acid Sequence
;
Aspergillus niger
;
enzymology
;
genetics
;
Endo-1,4-beta Xylanases
;
biosynthesis
;
Fermentation
;
Molecular Sequence Data
;
Mutagenesis
;
Mutation
;
Protoplasts
;
enzymology
;
beta-Glucosidase
;
biosynthesis
7.Cloning, expression and characterization of beta-glucosidase from Aspergillus fumigatus.
Yi XIE ; Haomiao OUYANG ; Ribo HUANG ; Dong CHEN ; Cheng JIN
Chinese Journal of Biotechnology 2013;29(9):1245-1253
Exploring new beta-glucosidase genes is of great importance to industrialize beta-glucosidase. The genomes of Aspergillus fumigatus contain a bgl gene, which encodes a 65 kDa putative beta-glucosidase. The bgl gene was cloned into an expression plasmid and transformed to Escherichia coli BL21 (DE3). The bgl was expressed upon induction of Isopropyl beta-D-1-thiogalactopyranoside (IPTG). The recombinant protein was purified by GST-tag affinity chromatography. The purified recombinant Bgl was characterized using Esculin as substrate. The optimum temperature and pH were 45 degrees C and 5.0-6.0, respectively. The K(m) for Esculin was 17.7 mmol/L. The enzyme was stable in the range of pH 4-7. After incubation at 70 degrees C for 2 h, the recombinant Bgl remained 60% of its activity. Metal ions and chemical reagents had different influences on the activity of beta-glucosidase. Ca2+ (1 mmol/L) could increase enzyme activity slightly. On the contrary, the enzyme activity was greatly inhibited by 5 mmol/L Sodium dodecyl sulfate (SDS). Based on our results, the A. fumigatus Bgl was thermostable beta-glucosidase.
Aspergillus fumigatus
;
enzymology
;
Cloning, Molecular
;
Enzyme Stability
;
Escherichia coli
;
genetics
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
metabolism
;
beta-Glucosidase
;
biosynthesis
;
genetics
;
metabolism
8.The structure-function relationship of thermostable beta-glycosidase from the thermophilic eubacterium Thermus nonproteolyticus HG102.
Xue-Peng YANG ; Shou-Jun YANG ; Bei-Zhong HAN ; Cheng JIN
Chinese Journal of Biotechnology 2005;21(1):84-91
Beta-glycosidase (Tngly) from the thermophilic eubacterium Thermus nonproteolyticus HG102, which is a thermostable monomeric protein and adopts the (beta/alpha)8 barrel fold, is an excellent model system to be investigated for the thermostable mechanism, activity and substrate specificity. Here, based on the analysis of structural basis for thermostability of Tngly (Wang et al, 2003) and comparison of other proteins structure of homofamily, Glu164 and Glu338 may act as proton donor and nucleophile in the hydrolysis reaction respectively; proline located at N1 of alpha-helix and arginine which can form ion link may contribute to the thermostability. We aim to further identify the critical sites and the amino acid residue(s) responsible for the activity, the thermal stability and the substrate specificity. Mutations had been constructed by site-directed mutagenesis. They are Glu164Gln, Glu338Ala, Pro316Gly, Arg325Leu, Pro344Phe, Pro356Ala and Pro316Gly/Pro356Ala. All mutant proteins were purified to SDS-PAGE purity. Changes in the conformations were examined by means of CD. The Glu338Ala mutant showed no detectable hydrolysis activity, but can synthesize oligosaccharides, as expected for the residue acting as the nucleophile of the reaction. The Glu164 acts as the general acid/base catalyst in the hydrolysis reaction. Changes in stabilities of mutants compared with wild-type were determined by means of heat inactivity experiment. These results indicate that the amino acid residue of proline that is located at N1 positions of alpha-helix, and Arg325 that form salt bridge between alpha-helices 5 and alpha-helices 6, are the critical sites to protein thermostabilization.
Bacterial Proteins
;
genetics
;
metabolism
;
Enzyme Stability
;
Hot Temperature
;
Hydrolysis
;
Mutagenesis, Site-Directed
;
Mutation
;
Structure-Activity Relationship
;
Thermus
;
enzymology
;
genetics
;
beta-Glucosidase
;
genetics
;
metabolism
9.Agrobacterium tumefaciens mediated Chitinase and beta-1,3-glucanase gene transformation for Pinellia ternata.
Bo JIN ; Fusheng JIANG ; Meirong YU ; Nipi CHEN ; Zhishan DING
China Journal of Chinese Materia Medica 2009;34(14):1765-1767
OBJECTIVETo obtain transgenic Pinellia ternata plants resistant to fungus by transfer Chitinase and beta-1,3-Glucanase gene from Trichoderma harzianum.
METHODUsing hygromycin phosphotransferase as the selection marker, the Chitinase gene (ech42), beta-1,3-Glucanase gene (gluc78) and both gene pCAMBIA(ech42 + gluc78) driven by CaMV35S promoter were transferred into P. ternata callus via Agrobacterium-mediated transformation.
RESULTPCR results confirmed that the regenerants were identified to be transgenic lines and the RT-PCR results confirmed that foreign genes construction were transfer to mRNA. Two foreign genes were inherited stably to T5 generation according to PCR results of the lines.
CONCLUSIONThe results showed that chitinase gene ech42 and beta-1, 3-glucanase gene gluc78 respectively or together introducing and co-integrating into P. ternata
Agrobacterium tumefaciens ; genetics ; metabolism ; Chitinases ; genetics ; metabolism ; Fungal Proteins ; genetics ; metabolism ; Gene Expression Regulation, Plant ; Gene Transfer Techniques ; Genetic Vectors ; genetics ; metabolism ; Glucan 1,3-beta-Glucosidase ; genetics ; metabolism ; Pinellia ; genetics ; metabolism ; Transformation, Genetic ; Trichoderma ; enzymology
10.Cloning and expression of a beta-glucosidase gene umcel3G from metagenome of buffalo rumen and characterization of the translated product.
Hong GUO ; Yi FENG ; Xinchun MO ; Chengjie DUAN ; Jiliang TANG ; Jiaxun FENG
Chinese Journal of Biotechnology 2008;24(2):232-238
Metagenomic cosmid libraries containing 1.26 x 10(5) clones, covering about 4.8 x 10(6) kb metagenomic DNA of uncultured microorganisms from the contents of buffalo rumens were constructed, and 118 independent clones expressing beta-glucosidase activity were isolated from the libraries. Screening of these clones showed that eight clones expressed relatively higher beta-glucosidase activity at pH 5.0 and 37 degrees C. One out of the eight clones was subcloned. Sequencing analysis showed that an open reading frame (ORF) of 2223 bp, termed umcel3G, potentially encodes a beta-glucosidase. The encoded product shared highest homology with a beta-glucosidase from Bacillus sp. at 60% identity and 73% similarity. The umcel3G was over-expressed in Escherichia coli and the size of the translated product Umcel3G on SDS-PAGE was in agreement with the predicted molecular mass. Zymogram analysis showed that Umcel3G exhibited beta-glucosidase activity, confirming that this ORF encodes a beta-glucosidase. The Umcel3G, purified with Ni-NTA column, exhibited optimal activity at pH 6.0-6.5 and 45 degrees C. Certain ions such as Ca2+, Zn2+ had significant positive effect on the activity of Umcel3G. However, some ions such as Fe3+, Cu2+ gave significant inhibitory effect on the enzyme. The Ni-NTA purified recombinant beta-glucosidase Umcel3G had a specific activity of 22.8 IU/mg at pH4.5, 35 degrees C and at the presence of 5 mmol/L Ca2+, indicating that this enzyme has potential applications in the fermentative production of ethanol by simultaneous saccharification and cofermentation (SSCF) of lignocelluloses.
Animals
;
Bacteria
;
enzymology
;
genetics
;
Buffaloes
;
Cloning, Molecular
;
Escherichia coli
;
genetics
;
metabolism
;
Open Reading Frames
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
isolation & purification
;
metabolism
;
Rumen
;
microbiology
;
beta-Glucosidase
;
biosynthesis
;
genetics
;
isolation & purification