1.Effect of ultrasound-guided foraminal electroacupuncture on spinal cord injury based on the Wnt/β-catenin signaling pathway.
Weixian WU ; Bin CHEN ; Jing LIU ; Li WANG ; Feizhen CHEN ; Yanling WU
Chinese Acupuncture & Moxibustion 2025;45(10):1442-1449
OBJECTIVE:
To observe the effects of ultrasound-guided foraminal electroacupuncture on neuronal apoptosis and motor function in rats with spinal cord injury (SCI), and to explore the potential underlying mechanisms.
METHODS:
Thirty-six SPF-grade Sprague-Dawley rats were randomly assigned to a sham operation group, a model group, and an ultrasound-guilded electroacupuncture group (electroacupuncture group), with 12 rats in each group. In the sham operation group, the spinal cord was exposed and then the incision was sutured without contusion. In the other two groups, SCI models were established using a modified Allen's impact method. On days 1, 3, 7, and 14 after modeling, the electroacupuncture group received electroacupuncture intervention at the T9/T10 and T10/T11 intervertebral foramen under ultrasound guidance, avoiding spinal cord injury. Stimulation parameters were dense-disperse wave at 2 Hz/100 Hz and 1-2 mA for each session. Following interventions on days 1, 3, 7, and 14, the Basso-Beattie-Bresnahan (BBB) score was assessed; the inclined plane test was used to assess hindlimb grip strength in rats. After the intervention, HE staining was used to observe spinal cord morphology; TUNEL staining was used to detect neuronal apoptosis; ELISA was used to measure the serum levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha (TNF-α); Western blot was used to analyze the protein expression of Wnt-4, β-catenin, c-Myc, Bax, Bcl-2, and NeuN in spinal tissue; quantitative real-time PCR was used to detect the mRNA expression of Wnt-4, β-catenin, c-Myc, Bax, Bcl-2, and NeuN.
RESULTS:
Compared with the sham operation group, the model group showed significantly reduced BBB scores (P<0.05), and reduced inclined plane angles (P<0.05) at all time points. Compared with the model group, the electroacupuncture group exhibited increased BBB scores on days 3, 7, and 14 (P<0.05), and higher inclined plane angles on days 1, 3, 7, and 14 (P<0.05). Compared with the sham operation group, the model group showed disorganized spinal cord structure with increased inflammatory cells and necrotic neurons, higher number of apoptotic neurons in spinal tissue (P<0.05), elevated serum IL-6, IL-1β, and TNF-α levels (P<0.05), increased protein and mRNA expression of Wnt-4, β-catenin, c-Myc, and Bax (P<0.05), and decreased protein and mRNA expression of Bcl-2 and NeuN in spinal tissue (P<0.05). Compared with the model group, the electroacupuncture group had fewer inflammatory cells and apoptotic neurons in spinal tissue (P<0.05), reduced serum IL-6, IL-1β, and TNF-α levels (P<0.05), increased protein and mRNA expression of Wnt-4, β-catenin, Bcl-2, and NeuN (P<0.05), and decreased protein and mRNA expression of c-Myc and Bax in spinal tissue (P<0.05).
CONCLUSION
Ultrasound-guided foraminal electroacupuncture could improve motor function in rats with SCI, potentially by regulating the expression of molecules related to the Wnt-4/β-catenin signaling pathway to inhibit neuronal apoptosis and inflammatory responses.
Animals
;
Electroacupuncture/methods*
;
Spinal Cord Injuries/physiopathology*
;
Rats, Sprague-Dawley
;
Rats
;
Wnt Signaling Pathway
;
Male
;
Humans
;
Female
;
beta Catenin/metabolism*
;
Apoptosis
;
Ultrasonography
;
Tumor Necrosis Factor-alpha/genetics*
;
Spinal Cord/metabolism*
2.LGR5 interacts with HSP90AB1 to mediate enzalutamide resistance by activating the WNT/β-catenin/AR axis in prostate cancer.
Ze GAO ; Zhi XIONG ; Yiran TAO ; Qiong WANG ; Kaixuan GUO ; Kewei XU ; Hai HUANG
Chinese Medical Journal 2025;138(23):3184-3194
BACKGROUND:
Enzalutamide, a second-generation androgen receptor (AR) pathway inhibitor, is widely used in the treatment of castration-resistant prostate cancer. However, after a period of enzalutamide treatment, patients inevitably develop drug resistance. In this study, we characterized leucine-rich repeated G-protein-coupled receptor 5 (LGR5) and explored its potential therapeutic value in prostate cancer.
METHODS:
A total of 142 pairs of tumor and adjacent formalin-fixed paraf-fin-embedded tissue samples from patients with prostate cancer were collected from the Pathology Department at Sun Yat-sen Memorial Hos-pital. LGR5 was screened by sequencing data of enzalutamide-resistant cell lines combined with sequencing data of lesions with different Gleason scores from the same patients. The biological function of LGR5 and its effect on enzalutamide resistance were investigated in vitro and in vivo . Glutathione-S-transferase (GST) pull-down, coimmunoprecipitation, Western blotting, and immunofluorescence assays were used to explore the specific binding mechanism of LGR5 and related pathway changes.
RESULTS:
LGR5 was significantly upregulated in prostate cancer and negatively correlated with poor patient prognosis. Overexpression of LGR5 promoted the malignant progression of prostate cancer and reduced sensitivity to enzalutamide in vitro and in vivo . LGR5 promoted the phosphorylation of glycogen synthase kinase-3β (GSK-3β) by binding heat shock protein 90,000 alpha B1 (HSP90AB1) and mediated the activation of the Wingless/integrated (WNT)/β-catenin signaling pathway. The increased β-catenin in the cytoplasm entered the nucleus and bound to the nuclear AR, promoting the transcription level of AR, which led to the enhanced tolerance of prostate cancer to enzalutamide. Reducing HSP90AB1 binding to LGR5 significantly enhanced sensitivity to enzalutamide.
CONCLUSIONS
LGR5 directly binds to HSP90AB1 and mediates GSK-3β phosphorylation, promoting AR expression by regulating the WNT/β-catenin signaling pathway, thereby conferring resistance to enzalutamide treatment in prostate cancer.
Male
;
Humans
;
Phenylthiohydantoin/pharmacology*
;
Benzamides
;
Receptors, G-Protein-Coupled/genetics*
;
Nitriles
;
Cell Line, Tumor
;
HSP90 Heat-Shock Proteins/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
Prostatic Neoplasms/drug therapy*
;
beta Catenin/metabolism*
;
Receptors, Androgen/genetics*
;
Animals
;
Mice
;
Wnt Signaling Pathway/physiology*
3.Mechanism of Compound Ziyin Granules in improving postmenopausal osteoporosis by modulating Wnt/β-catenin pathway.
Wen-Jing LIU ; Fan XIE ; Piao-Piao WANG ; Yu-Ting SUN ; Wen-Yan LI
China Journal of Chinese Materia Medica 2025;50(16):4659-4667
This study investigates the therapeutic effect and underlying mechanism of Compound Ziyin Granules(CZYG) on postmenopausal osteoporosis(PMOP) induced by bilateral ovariectomy in rats. Six-month-old female SD rats were randomly divided into sham-operated(sham) group, ovariectomy(OVX) model group, high-, medium-, and low-dose CZYG groups, and alendronate sodium(AS) group. After 30 days of model establishment, treatment was administered by gavage once daily for 8 weeks, followed by sample collection. Enzyme-linked immunosorbent assay(ELISA) was used to measure serum levels of calcium ions, alkaline phosphatase(AKP), estrogen(E_2), osteoprotegerin(OPG), osteocalcin(BGP), tartrate-resistant acid phosphatase(TRAP), and type Ⅰ procollagen N-terminal propeptide(PINP). Hematoxylin-eosin(HE) staining was used to observe the histopathological changes in the femurs of rats, while micro-computed tomography(micro-CT) was used to analyze the microstructure of the distal femur. Western blot analysis was performed to measure the expression levels of bone metabolism-related proteins, including wingless-type MMTV integration site family member 2(Wnt2), β-catenin, low-density lipoprotein receptor-related protein 5(LRP5), glycogen synthase kinase-3β(GSK-3β). The mRNA expression levels of Wnt2, β-catenin, LRP5, GSK-3β, p-GSK-3β were determined by quantitative real-time PCR(qRT-PCR). Thirty days after bilateral ovariectomy, compared to the sham group, the OVX group showed significant increases in body weight and significant decreases in uterine coefficient. After 8 weeks of treatment, compared to the OVX group, CZYG(medium and high doses) and AS reduced body weight, with high-dose CZYG and AS significantly increasing the uterine coefficient. Serum levels of AKP and TRAP were significantly elevated, while levels of calcium, E_2, BGP, and OPG were significantly decreased in the OVX group. Compared to the OVX group, CZYG and AS significantly reduced serum levels of AKP and TRAP, while high-dose CZYG and AS notably increased the levels of E_2, BGP, OPG, and PINP. Micro-CT and HE staining results indicated that CZYG(medium and high doses) and AS significantly increased bone tissue volume, trabecular number, bone mineral density, and improved the microstructure of the femur. Compared to the OVX group, high-dose CZYG and AS significantly upregulated the protein and mRNA expression levels of Wnt2, β-catenin, and LRP5, and downregulated the phosphorylation level of p-GSK-3β. These results suggest that CZYG can improve PMOP by promoting estrogen secretion, improving bone metabolism indicators, increasing trabecular number and bone mineral density. Its mechanism may be related to the regulation of the Wnt/β-catenin signaling pathway.
Animals
;
Female
;
Rats, Sprague-Dawley
;
Osteoporosis, Postmenopausal/genetics*
;
Rats
;
Wnt Signaling Pathway/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
beta Catenin/genetics*
;
Osteoprotegerin/metabolism*
;
Ovariectomy
;
Calcium/blood*
;
Bone Density/drug effects*
4.Advances in mechanotransduction signaling pathways in distraction osteogenesis.
Jinghong YANG ; Lujun JIANG ; Zi WANG ; Zhong LI ; Yanshi LIU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):912-918
OBJECTIVE:
To review the role and research progress of mechanotransduction signaling pathway in distraction osteogenesis, so as to provide theoretical basis and reference for clinical treatment.
METHODS:
The role and research progress of mechanotransduction signaling pathway in distraction osteogenesis were summarized by extensive review of relevant literature at home and abroad.
RESULTS:
The mechanotransduction signaling pathway plays a central role of "sensation-transformation-execution" in distraction osteogenesis, and activates a series of molecular mechanisms to promote the regeneration and remodeling of bone tissue by integrating external mechanical signals. Mechanical stimuli are converted into mechanotransduction signals through the perception of integrins, Piezo1 ion channels and bone cell networks. Activate downstream molecules are transduce through signal pathways such as Wnt/β-catenin, transforming growth factor β/bone morphogenetic protein-Smad, mitogen-activated protein kinase, protein kinase Hippo-Yes-associated protein/transcriptional coactivator with PDZ-binding motif, and phosphatidylinositol 3-kinase/ protein kinase B, so as to achieve the effects of promoting osteoblasts proliferation, accelerating endochondral ossification, regulating bone resorption and the like, thereby promoting the regeneration of new bone in the distraction area. The study of mechanotransduction signaling pathways in distraction osteogenesis is expected to optimize the mechanical parameters of distraction osteogenesis and provide targeted intervention strategies for accelerating new bone regeneration and mineralization in the distraction zone. However, the specific mechanism of mechanotransduction signaling pathway in distraction osteogenesis remains to be further elucidated, and artificial intelligence and multi-omics analysis may be the future development direction of mechanotransduction signaling pathway.
CONCLUSION
In distraction osteogenesis, mechanotransduction signal transduction is the core mechanism of bone regeneration in the distraction zone, which regulates cell behavior and tissue regeneration by converting mechanical stimulation into biochemical signals.
Mechanotransduction, Cellular/physiology*
;
Osteogenesis, Distraction/methods*
;
Humans
;
Signal Transduction
;
Bone Regeneration
;
Animals
;
Osteoblasts/metabolism*
;
Osteogenesis
;
Transforming Growth Factor beta/metabolism*
;
Ion Channels/metabolism*
;
Integrins/metabolism*
;
beta Catenin/metabolism*
;
Bone Morphogenetic Proteins/metabolism*
;
Smad Proteins/metabolism*
5.Adar3 promotes macrophage M2 polarization and alleviates viral myocarditis by activating the Wnt/β-catenin signaling pathway.
Mengying ZHANG ; Zhi LI ; Weiya PEI ; Shujun WAN ; Xueqin LI ; Kun LYU ; Xiaolong ZHU
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):769-777
Objective To investigate the role and mechanism of RNA-Specific adenosine deaminase 3 (Adar3) in regulating macrophage polarization during Coxsackievirus B3(CVB3)-induced viral myocarditis (VM). Methods Bone marrow-derived macrophages (BMDM) from mice were cultured in vitro and induced into M1/M2 macrophages using interferon-gamma (IFN-γ)/lipopolysaccharide (LPS) or interleukin 4 (IL-4), respectively. The mRNA expression levels of Adar1, Adar2, and Adar3 in each group of cells were assessed by real-time quantitative PCR (qRT-PCR). Specific siRNAs targeting the Adar3 gene were designed, synthesized, and transiently transfected into M2 macrophages. The mRNA levels of M2 polarization-related marker genes-including arginase 1 (Arg1), chitinase 3-like molecule 3 (YM1/Chi3l3), and resistin-like molecule alpha (RELMα/FIZZ1)-were detected by qRT-PCR. RNA sequencing was performed to analyze the signaling pathways affected by Adar3. The expression levels of Wnt/β-catenin signaling pathway were further validated using qRT-PCR and Western blot. The adeno-associated virus overexpressing Adar3 was designed, synthesized, and injected into mice via tail vein. Three weeks later, a myocarditis mouse model was established. After an additional week, the phenotype and function of cardiac macrophages, as well as multiple indicators of VM (including echocardiography, body weight, histopathology and serology) were examined. Additionally, the protein levels of the Wnt/β-catenin signaling pathway were assessed. Results Compared to M0-type macrophages, the expression level of Adar3 was significantly increased in M2-type macrophages. After transfection of Adar3 siRNA, the mRNA levels of Arg1, YM1 and FIZZ1 in M2 macrophages were downregulated. RNA sequencing revealed 149 upregulated genes and 349 downregulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and subsequent validation experiments indicated that Adar3 modulated the Wnt/β-catenin signaling pathway. In vivo experiments demonstrated that Adar3 overexpression alleviated the cardiac dysfunction of VM mice. The proportion of M1 macrophages in the heart decreased, while the proportion of M2 macrophages increased. At the same time, the Adar3 overexpression activated the Wnt/β-catenin signaling pathway. Conclusion Adar3 promotes macrophage polarization toward the M2 phenotype by activating the Wnt/β-catenin signaling pathway, thereby alleviating VM.
Animals
;
Adenosine Deaminase/metabolism*
;
Macrophages/immunology*
;
Wnt Signaling Pathway/genetics*
;
Myocarditis/immunology*
;
Mice
;
Coxsackievirus Infections/metabolism*
;
Male
;
Mice, Inbred BALB C
;
Enterovirus B, Human/physiology*
;
beta Catenin/genetics*
6.The mechanism of miR-148a inhibiting the proliferation of liver cancer cells by affecting macrophage M2 polarization through Wnt3a/β-catenin.
Guangyu HAN ; Naipeng ZHANG ; Xiufen LAN ; Lili SUN ; Huixin ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):790-797
Objective To investigate the mechanism by which miR-148a affects M2 macrophage polarization and inhibits liver cancer cell proliferation through Wnt3a/β-catenin. Methods The mRNA expression levels of miR-148a, CD206 and interleukin-10 (IL-10) in tumor tissues and adjacent non-tumor liver tissues of 84 patients with liver cancer were detected by real-time quantitative PCR. THP-1 cells were separated into blank group (conventional culture), M2 group (200 nmol/L phorbol ester, 20 ng/mL IL-4, 20 ng/mL IL-13), M2 combined with negative control (miR-NC) group (transfected with miR-NC on the basis of M2 group), M2 combined with miR-148a mimics (transfected with miR-148a mimics on the basis of M2 group) group, M2 combined with miR-148a mimics combined with Wnt3a (treated with 100 μg/L Wnt3a on top of M2 combined with miR-148a mimics group) group. The proliferation of HuH7 cells was detected by CCK-8 and EdU methods. Apoptosis and M2 macrophage marker CD206 was detected by flow cytometry. The level of IL-10 in cell supernatant was detected by chemiluminescence method; The mRNA levels of miR-148a, CD206 and IL-10 were detected by real-time quantitative PCR. The protein levels of Wnt3a and β-catenin were detected by Western blot. Results The expressions of CD206, IL-10 mRNA, Wnt3a and β-catenin in tumor tissue were higher than those in non-tumor liver tissues, and the miR-148a level was decreased. The mRNA expression of M2 macrophage markers CD206 and IL-10 were significantly increased. Compared with the blank group, the OD450 value, EdU positive rate, the mRNA expressions of CD206 and IL-10, the level of IL-10 in the supernatant, and the expressions of Wnt3a and β-catenin were increased in M2 group, while the apoptotic rate and miR-148a level were decreased. Compared with M2 group and M2 combined with miR-NC group, the OD450 value, EdU positive rate, the mRNA expressions of CD206 and IL-10, the level of IL-10 in the supernatant, and the expressions of Wnt3a and β-catenin were decreased in M2 combined with miR-148a mimics group, while the apoptotic rate and miR-148a level were increased. Wnt3a reversed the inhibitory effect of miR-148a overexpression on the proliferation of liver cancer cells. Conclusion Overexpression of miR-148a inhibits M2 polarization of macrophages and prevents the proliferation of liver cancer cells, which may be related to the inhibition of the Wnt3a/β-catenin pathway.
Humans
;
MicroRNAs/metabolism*
;
Wnt3A Protein/metabolism*
;
Liver Neoplasms/metabolism*
;
Cell Proliferation/genetics*
;
beta Catenin/genetics*
;
Macrophages/metabolism*
;
Interleukin-10/metabolism*
;
Apoptosis/genetics*
;
Cell Line, Tumor
;
Female
;
Male
;
Mannose Receptor
;
Lectins, C-Type/metabolism*
;
Mannose-Binding Lectins/metabolism*
;
Middle Aged
;
Receptors, Cell Surface/metabolism*
7.Investigation of the Effects of Arsenic Trioxide Combined with Deslorelin on Proliferation and Apoptosis of Jurkat Cells Based on Wnt/β-Catenin Pathway.
Journal of Experimental Hematology 2025;33(3):640-647
OBJECTIVE:
To investigate the effect of Arsenic trioxide (ATO) combined with Norcantharidin (NCTD) on the proliferation and apoptosis of Jurkat cells, and to evaluate its effect on the proliferation and apoptosis of acute T-lymphoblastic leukemia (T-ALL) based on the Wnt/β-catenin signaling pathway.
METHODS:
Jurkat cell lines were used as the study subjects and treated with different concentrations of ATO (0, 2, 4, 8, 16 μmol/L) and NCTD (0, 10, 25, 50, 100 μmol/L) for 72 hours, and the cell proliferation was detected by CCK-8. Meanwhile, flow cytometry was used to detect the apoptosis rate, EdU staining to detect cell proliferation viability, cell clone formation assay to assess cell cloning ability, Transwell assay to assess cell invasion ability, and Western blot to detect apoptosis and the expression of Wnt/β-catenin signaling pathway-related proteins.
RESULTS:
Compared with the control group, both ATO and NCTD effectively inhibited Jurkat cell proliferation when used alone, and the inhibition effect was more significant when used in combination ( P < 0.05). The combination significantly increased the apoptosis rate of Jurkat cells ( P < 0.05). Meanwhile, the combination significantly decreased the proliferation vitality and clone formation ability of the cells ( P < 0.05), and inhibited the invasion ability of Jurkat cells ( P < 0.05). Western blot analysis showed that the combination of ATO and NCTD significantly up-regulated the expression of pro-apoptotic proteins Bax and E-cadherin, and down-regulated the expression of anti-apoptotic proteins Bcl-2, c-myc and Cyclin D1 ( P < 0.05).
CONCLUSION
The combination of ATO and NCTD had a synergistic effect in inhibiting proliferation and promoting apoptosis in Jurkat cells, which may be related to the inhibition of Wnt/β-catenin signaling pathway.
Humans
;
Apoptosis/drug effects*
;
Jurkat Cells
;
Cell Proliferation/drug effects*
;
Arsenic Trioxide
;
Wnt Signaling Pathway/drug effects*
;
Bridged Bicyclo Compounds, Heterocyclic/pharmacology*
;
beta Catenin/metabolism*
;
Arsenicals/pharmacology*
;
Oxides/pharmacology*
8.Research Progress of the Wnt/β-catenin Signaling Pathway in the Regulation of Oxidative Stress and Its Impact on the Hematopoietic System --Review.
Journal of Experimental Hematology 2025;33(3):927-930
Excessive generation of reactive oxygen species (ROS) can lead to oxidative-antioxidative imbalance in the organism, resulting in oxidative stress. Hematopoietic stem/progenitor cells (HSPCs) exhibit high sensitivity to changes in ROS levels, and high levels of ROS can impair self-renewal capacity of HSPCs, leading to oxidative damage and even death. Wnt/β-catenin signaling pathway regulates hematopoiesis and plays an important role in determining the fate of stem cells, such as self-renewal, proliferation and differentiation of HSPCs. Studies have shown that Wnt/β-catenin signaling pathway is also closely related to oxidative stress. This article summarizes the relevant literature, and reviews the role of Wnt/β-catenin signaling pathway in oxidative stress, its impact on hematopoietic system, and the current research status of related mechanisms.
Oxidative Stress
;
Humans
;
Wnt Signaling Pathway
;
Hematopoietic Stem Cells
;
Reactive Oxygen Species/metabolism*
;
Hematopoietic System/metabolism*
;
beta Catenin/metabolism*
;
Hematopoiesis
9.Plastrum Testudinis Stimulates Bone Formation through Wnt/β-catenin Signaling Pathway Regulated by miR-214.
Qing LIN ; Bi-Yi ZHAO ; Xiao-Yun LI ; Wei-Peng SUN ; Hong-Hao HUANG ; Yu-Mei YANG ; Hao-Yu WANG ; Xiao-Feng ZHU ; Li YANG ; Rong-Hua ZHANG
Chinese journal of integrative medicine 2025;31(8):707-716
OBJECTIVE:
To investigate the Wnt signaling pathway and miRNAs mechanism of extracts of Plastrum Testudinis (PT) in the treatment of osteoporosis (OP).
METHODS:
Thirty female Sprague Dawley rats were randomly divided into 5 groups by random number table method, including sham group, ovariectomized group (OVX), ovariectomized groups treated with high-, medium-, and low-dose PT (160, 80, 40 mg/kg per day, respectively), with 6 rats in each group. Except for the sham group, the other rats underwent bilateral ovariectomy to simulate OP and received PT by oral gavage for 10 consecutive weeks. After treatment, bone mineral density was measured by dual-energy X-ray absorptiometry; bone microstructure was analyzed by micro-computed tomography and hematoxylin and eosin staining; and the expressions of osteogenic differentiation-related factors were detected by immunochemistry, Western blot, and quantitative polymerase chain reaction. In addition, Dickkopf-1 (Dkk-1) was used to inhibit the Wnt signaling pathway in bone marrow mesenchymal stem cells (BMSCs) and miRNA overexpression was used to evaluate the effect of miR-214 on the osteogenic differentiation of BMSCs. Subsequently, PT extract was used to rescue the effects of Dkk-1 and miR-214, and its impacts on the osteogenic differentiation-related factors of BMSCs were evaluated.
RESULTS:
PT-M and PT-L significantly reduced the weight gain in OVX rats (P<0.05). PT also regulated the bone mass and bone microarchitecture of the femur in OVX rats, and increased the expressions of bone formation-related factors including alkaline phosphatase, bone morphogenetic protein type 2, collagen type I alpha 1, and runt-related transcription factor 2 when compared with the OVX group (P<0.05 or P<0.01). Meanwhile, different doses of PT significantly rescued the inhibition of Wnt signaling pathway-related factors in OVX rats, and increased the mRNA or protein expressions of Wnt3a, β-catenin, glycogen synthase kinase-3β, and low-density lipoprotein receptor-related protein 5 (P<0.05 or P<0.01). PT stimulated the osteogenic differentiation of BMSCs inhibited by Dkk-1 and activated the Wnt signaling pathway. In addition, the expression of miR-214 was decreased in OVX rats (P<0.01), and it was negatively correlated with the osteogenic differentiation of BMSCs (P<0.01). MiR-214 mimic inhibited Wnt signaling pathway in BMSCs (P<0.05 or P<0.01). Conversely, PT effectively counteracted the effect of miR-214 mimic, thereby activating the Wnt signaling pathway and stimulating osteogenic differentiation in BMSCs (P<0.05 or P<0.01).
CONCLUSION
PT stimulates bone formation in OVX rats through β-catenin-mediated Wnt signaling pathway, which may be related to inhibiting miR-214 in BMSCs.
Animals
;
MicroRNAs/genetics*
;
Female
;
Rats, Sprague-Dawley
;
Wnt Signaling Pathway/genetics*
;
Osteogenesis/genetics*
;
Mesenchymal Stem Cells/cytology*
;
Cell Differentiation/drug effects*
;
Bone Density/drug effects*
;
Ovariectomy
;
Osteoporosis/drug therapy*
;
beta Catenin/metabolism*
;
Rats
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
10.Mechanism of Sangqi Qingxuan Liquid in Alleviating Vascular Endothelial Injury in Hypertension Focuses on β-Catenin.
Wei-Quan REN ; Xin ZENG ; Jiang-Quan LIAO ; Li HUANG ; Lin LI
Chinese journal of integrative medicine 2025;31(8):726-734
OBJECTIVE:
To explore the main components and potential mechanisms of Sangqi Qingxuan Liquid in the treatment of arterial vascular endothelial cells (AVECs) injury in hypertension through network pharmacology.
METHODS:
Traditional Chinese Medicine Systems Pharmacology and Analysis Platform (TCMSP) and Traditional Chinese Medicine Integrated Database (TCMID) were used to screen the active components of Sangqi Qingxuan Liquid (SQQX), which met the oral utilization rate and drug similarity criteria. An active component-target network was constructed using Cytoscape 3.6 software. A protein-protein interaction (PPI) network of targets associated with SQQX treatment for hypertension was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The Metascape database was used to perform enrichment analysis of gene ontology biological functions and MSigDB pathway enrichment analysis of proteins in the PPI network. Further analysis of the main components of SQQX was performed using UPLC-MS. Based on the results of network pharmacology, the mechanism of SQQX to improve the injury of AVECs in hypertension was verified through lentiviral transfection by Wnt/ β -catenin signaling pathway. AVECs induced by angiotensin II (Ang II ) was used to establish a model of endothelial function injury in hypertension. Cell viability, intracellular nitric oxide content, malonaldehyde content, and superoxide dismutase activity were measured to determine the optimal induction conditions. The optimal intervention conditions for SQQX were determined based on cell viability, cellular DNA activity, and the gradient method. The cells were further divided into blank, model, overexpression lentivirus negative control, overexpression lentivirus, overexpression lentivirus + SQQX intervention (2.47 mg/mL, 12 h), inhibition lentivirus negative control, inhibition lentivirus, and inhibition lentivirus + SQQX intervention (2.47 mg/mL, 12 h) groups. Finally, quantitative real-time PCR and Western blotting were performed to analyze the molecular mechanisms of SQQX in the Wnt/ β -catenin signaling pathway.
RESULTS:
The main SQQX components were betaine, buddleoside, and chlorogenic acid, in descending order. Network pharmacology analysis screened 12 pathways associated with the hypertensive vascular endothelium. The results showed that 1 µ mol/L for 12 h was the optimal condition for Ang II to induce AVECs injury, and 2.47 mg/mL SQQX intervention for 12 h was the optimal condition for treating AVECs injury. In the experimental validation based on the interaction network of the Wnt/ β -catenin signaling pathway, SQQX significantly decreased the expressions of β -catenin, Smad2, peroxisome proliferator-activated receptors (PPARs), endothelial nitric oxide synthase (eNOS), and endothelin-1 (ET-1) caused by the β -catenin overexpression lentivirus (P<0.05 or P<0.01). The function of vascular endothelial cells can be improved by the β -catenin inhibition lentivirus, and no obvious changes were observed after further intervention with SQQX.
CONCLUSION
SQQX may protect against AVECs injury by regulating the Wnt/β -catenin signaling pathway.
Drugs, Chinese Herbal/therapeutic use*
;
beta Catenin/metabolism*
;
Hypertension/metabolism*
;
Endothelial Cells/metabolism*
;
Protein Interaction Maps/drug effects*
;
Humans
;
Wnt Signaling Pathway/drug effects*
;
Network Pharmacology
;
Endothelium, Vascular/injuries*
;
Cell Survival/drug effects*
;
Angiotensin II/pharmacology*
;
Nitric Oxide/metabolism*

Result Analysis
Print
Save
E-mail