1.Role of microglial activation induced by α-synuclein in pathogenesis of Parkinson's disease.
Sen QIAO ; Jian-hong LUO ; Jing-hua JIN
Journal of Zhejiang University. Medical sciences 2012;41(2):210-214
Parkinson's disease (PD), a progressive neurodegenerative disorder, is pathologically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the presence of deposits of aggregated α-synuclein in intracellular inclusions known as Lewy bodies (LB). A highly localized inflammatory response mediated by reactive microglia is prominent in PD brains, but the mechanisms underlying the microglial activation are poorly understood. Recently some lines of evidences have shown that monomeric, or aggregated α-synuclein can activate microglia, the toxic factors released from activated microglia may lead to the cell death of dopaminergic neurons. This review is to summarize the recent progress on the role of α-synuclein induced microglia activation on the PD pathogenesis and progression, and to discuss the possible mechanisms involved.
Humans
;
Microglia
;
pathology
;
Parkinson Disease
;
etiology
;
metabolism
;
pathology
;
alpha-Synuclein
;
chemistry
;
metabolism
;
physiology
2.Transcriptional mutagenesis by 8-oxodG in alpha-synuclein aggregation and the pathogenesis of Parkinson's disease.
Sambuddha BASU ; Goun JE ; Yoon Seong KIM
Experimental & Molecular Medicine 2015;47(8):e179-
Parkinson's disease (PD) is an age-related progressive neurodegenerative disease associated with selective loss of dopaminergic neurons. The characteristic hallmark of the disease is intracytoplasmic proteinacious inclusion bodies called Lewy bodies, primarily consisting of a presynaptic protein alpha-synuclein. Oxidative stress-mediated damage to macromolecules have been shown to occur frequently in PD. Oxidative damage to DNA in the form of oxidized guanine (8-oxodG) accumulates in both the mitochondrial and nuclear DNA of dopaminergic neurons of the substantia nigra in PD. 8-oxodG-mediated transcriptional mutagenesis has been shown to have the potential to alter phenotype of cells through production of mutant pool of proteins. This review comprehensively summarizes the role of oxidative stress-mediated damage incurred during neurodegeneration, and highlights the scope of transcriptional mutagenesis event in leading to alpha-synuclein aggregation as seen in PD.
Amino Acid Sequence
;
Animals
;
Deoxyguanosine/*analogs & derivatives/metabolism
;
Humans
;
Molecular Sequence Data
;
Mutagenesis
;
*Oxidative Stress
;
Parkinson Disease/*genetics/metabolism/pathology
;
Protein Aggregation, Pathological/*genetics/metabolism/pathology
;
Substantia Nigra/metabolism/*pathology
;
Transcription, Genetic
;
alpha-Synuclein/chemistry/*genetics
3.Effect of curcumin on oligomer formation and mitochondrial ATP-sensitive potassium channels induced by overexpression or mutation of α-synuclein.
Tao CHEN ; Yidong DENG ; Xiaoping LIAO ; Jiannong ZHAO ; Guoqiang WEN ; Guohu WENG ; Fei MA ; Yingying ZHENG
Chinese Journal of Medical Genetics 2015;32(4):462-467
OBJECTIVETo investigate the effect of curcumin on oligomer formation and mitochondrial ATP-sensitive potassium channels (mitoKATP) induced by overexpression or mutation of α-synuclein.
METHODSRecombinant plasmids α-synuclein-pEGFP-A53T and α-synuclein-pEGFP-WT were transfected into PC12 cells by lipofectamin method, and intervened by application of curcumin (20 μmol/L) and 5-hydroxydecanoate (5-HD). Oligomer formation in the cultured cells was identified by Western blotting and Dot blotting. Cytotoxicity and apoptosis of the PC12 cells were measured by lactate dehydrogenase (LDH) and JC-1 assays. mitoKATP were identified by Western blotting and whole cell patch clamp.
RESULTSCurcumin has significantly reduced the oligomer formation induced by overexpression or mutation of α-synuclein in the cultured cells. LDH has decreased by 36.3% and 23.5%, and red/green fluorescence ratio of JC-1 was increased respectively by 48.46% and 50.33% after application of curcumin (P<0.05). Protein expression of Kir6.2 has decreased and mitoKATP channel current has significantly increased (P<0.05).
CONCLUSIONCurcumin can inhibit α-synuclein gene overexpression or mutation induced α-synuclein oligomers formation. It may block apoptosis induced by wild-type overexpression or mutation of α-synuclein. By stabilizing mitochondrial membrane potential. Opening of mitoKATP channel may have been the initiating protective mechanism of apoptosis induced by wild-type overexpression or mutation of α-synuclein. Curcumin may antagonize above cytotoxicity through further opening the mitoKATP channel.
Animals ; Apoptosis ; drug effects ; Cell Line ; Curcumin ; pharmacology ; Humans ; KATP Channels ; chemistry ; genetics ; metabolism ; Mitochondria ; drug effects ; genetics ; metabolism ; Mutation ; drug effects ; PC12 Cells ; Parkinson Disease ; drug therapy ; genetics ; metabolism ; physiopathology ; Rats ; alpha-Synuclein ; genetics
4.Loss of glucocerebrosidase 1 activity causes lysosomal dysfunction and alpha-synuclein aggregation.
Eun Jin BAE ; Na Young YANG ; Cheolsoon LEE ; He Jin LEE ; Seokjoong KIM ; Sergio Pablo SARDI ; Seung Jae LEE
Experimental & Molecular Medicine 2015;47(3):e153-
Lysosomal dysfunction is a common pathological feature of neurodegenerative diseases. GTP-binding protein type A1 (GBA1) encodes beta-glucocerebrosidase 1 (GCase 1), a lysosomal hydrolase. Homozygous mutations in GBA1 cause Gaucher disease, the most common lysosomal storage disease, while heterozygous mutations are strong risk factors for Parkinson's disease. However, whether loss of GCase 1 activity is sufficient for lysosomal dysfunction has not been clearly determined. Here, we generated human neuroblastoma cell lines with nonsense mutations in the GBA1 gene using zinc-finger nucleases. Depending on the site of mutation, GCase 1 activity was lost or maintained. The cell line with GCase 1 deficiency showed indications of lysosomal dysfunction, such as accumulation of lysosomal substrates, reduced dextran degradation and accumulation of enlarged vacuolar structures. In contrast, the cell line with C-terminal truncation of GCase 1 but with intact GCase 1 activity showed normal lysosomal function. When alpha-synuclein was overexpressed, accumulation and secretion of insoluble aggregates increased in cells with GCase 1 deficiency but did not change in mutant cells with normal GCase 1 activity. These results demonstrate that loss of GCase 1 activity is sufficient to cause lysosomal dysfunction and accumulation of alpha-synuclein aggregates.
Cell Line
;
Enzyme Activation/genetics
;
Gene Knockout Techniques
;
Gene Order
;
Genetic Loci
;
Glucosylceramidase/genetics/*metabolism
;
Humans
;
Lysosomes/*metabolism
;
Mutation
;
*Protein Aggregation, Pathological/genetics
;
Protein Binding
;
Zinc Fingers
;
alpha-Synuclein/chemistry/*metabolism
5.Expression of proteins related neurodegeneration in autopsy brains of the aged.
Mingwei ZHU ; Xiumei MENG ; Luning WANG ; Yazhuo HU ; Honghong ZHANG ; Zhitao HAN
Chinese Journal of Pathology 2014;43(10):651-656
OBJECTIVETo recognize relationship of protein related neurodegeneration abnormal aggregation in the aged brains with their cognitive and motor functions.
METHODSBrain tissues from the consecutive autopsy cases of the aged from January 2005 to December 2006 in PLA General Hospital were carried out for immunohistochemical staining with beta amyloid, tau, α-synuclein and ubiquitin antibodies. The consortium to establish a registry for Alzheimer's disease (CERAD) was used to semi-quantitatively analyze Aβ positive core plaques density and Braak staging for tau positive neurofibrillary tangles (NFTs) and α-synuclein positive Lewy bodies. In addition, Aβ positive cerebral amyloid angiopathy (CAA), neuritic plaques and various ubiquitin positive structures were also observed. The relationship of these protein abnormal depositions in the aged brains with cognitive and motor functions were analyzed.
RESULTSIn brain tissues of 16 consecutive autopsy cases of the aged from 78 to 95 years, there were 13 cases with Aβ positive core plaques, their density was 2 cases with sparse, 2 cases with moderate and 9 cases with frequent, respectively, according to CREAD.Eight cases with Aβ positive CAA were found, including 6 cases of mild CAA and 2 cases of severe CAA. There were 12 cases with tau positive NFTs, including 6 cases with Braak stageI-II, 4 cases with stage III-IV and 2 cases with stage V-VI. There were 5 cases with frequent Aβ core plaques, meanwhile existing numerous tau/ubiquitin positive neuritic plaques and Braak stage IV-VI of tau positive NFTs, all of them presented cognitive dysfunction. Among 4 other cases with frequent Aβ core plaques, only one case coexisted α-synuclein positive Lewy bodies showed moderate cognitive impairment, remaining 3 cases did not present cognitive dysfunction. There were 4 cases with α-synuclein positive Lewy bodies in the brainstem, and all of these cases presented parkinsonian motor dysfunction. 13 cases with ubiquitin positive structures were found.
CONCLUSIONSBeta amyloid protein positive deposit in the aged brain is an important marker of normal brain aging and cognitive impairment; frequent Aβ core plaques in the neocortex plus Braak IV and above tau positive NFTs are closely related to cognitive dysfunction of Alzheimer's disease; α-synuclein positive Lewy bodies in the brainstem is one of the important pathological markers of parkinsonian motor disorders; ubiquitin deposition involves the development of some characteristic structures of several neurodegenerative diseases.
Aged ; Alzheimer Disease ; metabolism ; pathology ; Amyloid beta-Peptides ; analysis ; Autopsy ; Brain ; pathology ; Brain Chemistry ; Cerebral Amyloid Angiopathy ; Humans ; Neurofibrillary Tangles ; chemistry ; pathology ; Plaque, Amyloid ; Ubiquitin ; analysis ; alpha-Synuclein ; analysis ; tau Proteins ; analysis
6.Autophagic failure promotes the exocytosis and intercellular transfer of alpha-synuclein.
He Jin LEE ; Eun Duk CHO ; Kyung Won LEE ; Jung Hyun KIM ; Ssang Goo CHO ; Seung Jae LEE
Experimental & Molecular Medicine 2013;45(5):e22-
The accumulation of abnormal protein aggregates is a major characteristic of many neurodegenerative disorders, including Parkinson's disease (PD). The intracytoplasmic deposition of alpha-synuclein aggregates and Lewy bodies, often found in PD and other alpha-synucleinopathies, is thought to be linked to inefficient cellular clearance mechanisms, such as the proteasome and autophagy/lysosome pathways. The accumulation of alpha-synuclein aggregates in neuronal cytoplasm causes numerous autonomous changes in neurons. However, it can also affect the neighboring cells through transcellular transmission of the aggregates. Indeed, a progressive spreading of Lewy pathology among brain regions has been hypothesized from autopsy studies. We tested whether inhibition of the autophagy/lysosome pathway in alpha-synuclein-expressing cells would increase the secretion of alpha-synuclein, subsequently affecting the alpha-synuclein deposition in and viability of neighboring cells. Our results demonstrated that autophagic inhibition, via both pharmacological and genetic methods, led to increased exocytosis of alpha-synuclein. In a mixed culture of alpha-synuclein-expressing donor cells with recipient cells, autophagic inhibition resulted in elevated transcellular alpha-synuclein transmission. This increase in protein transmission coincided with elevated apoptotic cell death in the recipient cells. These results suggest that the inefficient clearance of alpha-synuclein aggregates, which can be caused by reduced autophagic activity, leads to elevated alpha-synuclein exocytosis, thereby promoting alpha-synuclein deposition and cell death in neighboring neurons. This finding provides a potential link between autophagic dysfunction and the progressive spread of Lewy pathology.
Adenine/analogs & derivatives/pharmacology
;
Animals
;
*Autophagy/drug effects
;
Cell Line
;
*Exocytosis/drug effects
;
Extracellular Space/*metabolism
;
Humans
;
Mice
;
Mice, Knockout
;
Microtubule-Associated Proteins/deficiency/metabolism
;
Phagosomes/drug effects/metabolism
;
Protein Structure, Quaternary
;
Protein Transport/drug effects
;
alpha-Synuclein/chemistry/*metabolism/secretion/toxicity