1.A novel approach for identifying the heme-binding proteins from mouse tissues.
Xiaolei LI ; Xiaoshan WANG ; Kang ZHAO ; Zhengfeng ZHOU ; Caifeng ZHAO ; Ren YAN ; Liang LIN ; Tingting LEI ; Jianning YIN ; Rong WANG ; Zhongsheng SUN ; Zuyuan XU ; Jingyue BAO ; Xiuqing ZHANG ; Xiaoli FENG ; Siqi LIU
Genomics, Proteomics & Bioinformatics 2003;1(1):78-86
Heme is a key cofactor in aerobic life, both in eukaryotes and prokaryotes. Because of the high reactivity of ferrous protoporphyrin IX, the reactions of heme in cells are often carried out through heme-protein complexes. Traditionally studies of heme-binding proteins have been approached on a case by case basis, thus there is a limited global view of the distribution of heme-binding proteins in different cells or tissues. The procedure described here is aimed at profiling heme-binding proteins in mouse tissues sequentially by 1) purification of heme-binding proteins by heme-agarose, an affinity chromatographic resin; 2) isolation of heme-binding proteins by SDS-PAGE or two-dimensional electrophoresis; 3) identification of heme-binding proteins by mass spectrometry. In five mouse tissues, over 600 protein spots were visualized on 2-DE gel stained by Commassie blue and 154 proteins were identified by MALDI-TOF, in which most proteins belong to heme related. This methodology makes it possible to globally characterize the heme-binding proteins in a biological system.
Animals
;
Carrier Proteins
;
biosynthesis
;
genetics
;
Electrophoresis, Gel, Two-Dimensional
;
Electrophoresis, Polyacrylamide Gel
;
Heme
;
chemistry
;
Hemeproteins
;
biosynthesis
;
genetics
;
Mass Spectrometry
;
Mice
;
Mice, Inbred ICR
;
Protein Binding
;
Proteins
;
chemistry
;
Proteome
;
Proteomics
;
methods
;
Sepharose
;
chemistry
;
Tissue Distribution
2.Sarcopenia: a new challenge in liver transplantation
Xiao XU ; Hao CHEN ; Di LU ; Zuyuan LIN
Chinese Journal of Digestive Surgery 2021;20(10):1025-1030
Liver transplantation remains as the first choice treatment for patients with end stage liver diseases. Sarcopenia is a skeletal muscle disease characterized by loss of muscle mass and muscle function. As a common but easily overlooked complication, sarcopenia significantly influences the death and prognosis of recipients with cirrhosis and liver cancer waiting liver trans-plantation, which significantly influences the death and prognosis of those patients. Scientific evalua-tion and fine stratification of sarcopenia are expected to achieve precision intervention and improve prognosis of liver transplantation recipients.As sarcopenia is increasingly important in perioperative as well as medium and long-term management of liver transplantation recipients, it should be incorporated into normalized clinical diagnosis and treatment system. The authors review the research results at home and abroad, and comprehensively expound the research progress of sarcopenia in liver transplantation, in order to improve the cognition of sarcopenia in liver transplan-tation recipients in China.
3.Double-negative T cells: a promising avenue of adoptive cell therapy in transplant oncology.
Zhihang HU ; Modan YANG ; Hao CHEN ; Chiyu HE ; Zuyuan LIN ; Xinyu YANG ; Huigang LI ; Wei SHEN ; Di LU ; Xiao XU
Journal of Zhejiang University. Science. B 2023;24(5):387-396
Tumor recurrence is one of the major life-threatening complications after liver transplantation for liver cancer. In addition to the common mechanisms underlying tumor recurrence, another unavoidable problem is that the immunosuppressive therapeutic regimen after transplantation could promote tumor recurrence and metastasis. Transplant oncology is an emerging field that addresses oncological challenges in transplantation. In this context, a comprehensive therapeutic management approach is required to balance the anti-tumor treatment and immunosuppressive status of recipients. Double-negative T cells (DNTs) are a cluster of heterogeneous cells mainly consisting of two subsets stratified by T cell receptor (TCR) type. Among them, TCRαβ+ DNTs are considered to induce immune suppression in immune-mediated diseases, while TCRγδ+ DNTs are widely recognized as tumor killers. As a composite cell therapy, healthy donor-derived DNTs can be propagated to therapeutic numbers in vitro and applied for the treatment of several malignancies without impairing normal tissues or being rejected by the host. In this work, we summarized the biological characteristics and functions of DNTs in oncology, immunology, and transplantation. Based on the multiple roles of DNTs, we propose that a new balance could be achieved in liver transplant oncology using them as an off-the-shelf adoptive cell therapy (ACT).
Humans
;
T-Lymphocytes
;
Immunotherapy, Adoptive
;
Neoplasm Recurrence, Local
;
Transplantation, Homologous
;
Cell- and Tissue-Based Therapy
4.Complete genome sequences of the SARS-CoV: the BJ Group (Isolates BJ01-BJ04).
Shengli BI ; E'de QIN ; Zuyuan XU ; Wei LI ; Jing WANG ; Yongwu HU ; Yong LIU ; Shumin DUAN ; Jianfei HU ; Yujun HAN ; Jing XU ; Yan LI ; Yao YI ; Yongdong ZHOU ; Wei LIN ; Hong XU ; Ruan LI ; Zizhang ZHANG ; Haiyan SUN ; Jingui ZHU ; Man YU ; Baochang FAN ; Qingfa WU ; Wei LIN ; Lin TANG ; Baoan YANG ; Guoqing LI ; Wenming PENG ; Wenjie LI ; Tao JIANG ; Yajun DENG ; Bohua LIU ; Jianping SHI ; Yongqiang DENG ; Wei WEI ; Hong LIU ; Zongzhong TONG ; Feng ZHANG ; Yu ZHANG ; Cui'e WANG ; Yuquan LI ; Jia YE ; Yonghua GAN ; Jia JI ; Xiaoyu LI ; Xiangjun TIAN ; Fushuang LU ; Gang TAN ; Ruifu YANG ; Bin LIU ; Siqi LIU ; Songgang LI ; Jun WANG ; Jian WANG ; Wuchun CAO ; Jun YU ; Xiaoping DONG ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(3):180-192
Beijing has been one of the epicenters attacked most severely by the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) since the first patient was diagnosed in one of the city's hospitals. We now report complete genome sequences of the BJ Group, including four isolates (Isolates BJ01, BJ02, BJ03, and BJ04) of the SARS-CoV. It is remarkable that all members of the BJ Group share a common haplotype, consisting of seven loci that differentiate the group from other isolates published to date. Among 42 substitutions uniquely identified from the BJ group, 32 are non-synonymous changes at the amino acid level. Rooted phylogenetic trees, proposed on the basis of haplotypes and other sequence variations of SARS-CoV isolates from Canada, USA, Singapore, and China, gave rise to different paradigms but positioned the BJ Group, together with the newly discovered GD01 (GD-Ins29) in the same clade, followed by the H-U Group (from Hong Kong to USA) and the H-T Group (from Hong Kong to Toronto), leaving the SP Group (Singapore) more distant. This result appears to suggest a possible transmission path from Guangdong to Beijing/Hong Kong, then to other countries and regions.
Genome, Viral
;
Haplotypes
;
Humans
;
Mutation
;
Open Reading Frames
;
Phylogeny
;
SARS Virus
;
genetics
5.A genome sequence of novel SARS-CoV isolates: the genotype, GD-Ins29, leads to a hypothesis of viral transmission in South China.
E'de QIN ; Xionglei HE ; Wei TIAN ; Yong LIU ; Wei LI ; Jie WEN ; Jingqiang WANG ; Baochang FAN ; Qingfa WU ; Guohui CHANG ; Wuchun CAO ; Zuyuan XU ; Ruifu YANG ; Jing WANG ; Man YU ; Yan LI ; Jing XU ; Bingyin SI ; Yongwu HU ; Wenming PENG ; Lin TANG ; Tao JIANG ; Jianping SHI ; Jia JI ; Yu ZHANG ; Jia YE ; Cui'e WANG ; Yujun HAN ; Jun ZHOU ; Yajun DENG ; Xiaoyu LI ; Jianfei HU ; Caiping WANG ; Chunxia YAN ; Qingrun ZHANG ; Jingyue BAO ; Guoqing LI ; Weijun CHEN ; Lin FANG ; Changfeng LI ; Meng LEI ; Dawei LI ; Wei TONG ; Xiangjun TIAN ; Jin WANG ; Bo ZHANG ; Haiqing ZHANG ; Yilin ZHANG ; Hui ZHAO ; Xiaowei ZHANG ; Shuangli LI ; Xiaojie CHENG ; Xiuqing ZHANG ; Bin LIU ; Changqing ZENG ; Songgang LI ; Xuehai TAN ; Siqi LIU ; Wei DONG ; Jun WANG ; Gane Ka-Shu WONG ; Jun YU ; Jian WANG ; Qingyu ZHU ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(2):101-107
We report a complete genomic sequence of rare isolates (minor genotype) of the SARS-CoV from SARS patients in Guangdong, China, where the first few cases emerged. The most striking discovery from the isolate is an extra 29-nucleotide sequence located at the nucleotide positions between 27,863 and 27,864 (referred to the complete sequence of BJ01) within an overlapped region composed of BGI-PUP5 (BGI-postulated uncharacterized protein 5) and BGI-PUP6 upstream of the N (nucleocapsid) protein. The discovery of this minor genotype, GD-Ins29, suggests a significant genetic event and differentiates it from the previously reported genotype, the dominant form among all sequenced SARS-CoV isolates. A 17-nt segment of this extra sequence is identical to a segment of the same size in two human mRNA sequences that may interfere with viral replication and transcription in the cytosol of the infected cells. It provides a new avenue for the exploration of the virus-host interaction in viral evolution, host pathogenesis, and vaccine development.
Base Sequence
;
China
;
Cluster Analysis
;
Gene Components
;
Genetic Variation
;
Genome, Viral
;
Genotype
;
Molecular Sequence Data
;
Phylogeny
;
Reverse Transcriptase Polymerase Chain Reaction
;
SARS Virus
;
genetics
;
Sequence Analysis, DNA
;
Severe Acute Respiratory Syndrome
;
genetics