1.The clinical characteristics and resistance analysis of children infected with Klebsiella pneumonia in community and nosocomial
Chongqing Medicine 2013;(36):4382-4384
Objective To investigate clinical characteristics of children infected with Klebsiella pneumonia (KP) in community and nosocomial ,and analysis briefly about their resistance .Methods 79 cases of children with pneumonia identified as KP infection by the method of sputum bacterial culture were collected and divided into nosocomial infection group (11 cases) and community in-fection group(68 cases) from January 2009 to December 2012 .The clinical information were recorded ,sputum bacterial susceptibili-ty and extended-spectrum β-lactamase enzyme were tested .Results 10 cases and 12 cases of extended-spectrumβ-lactamase enzyme strains were detected from nosocomial infection group and community infection group ,respectively .The children infected KP had a high degree of resistance to cefazolin ,ampicillin/sulbactam ,head penicillin ,ceftriaxone ,aztreonam ,cefepime and ceftazidime ,while sensitive to ciprofloxacin ,cefotetan and piperacillin/tazobactam in the nosocomial infection group .12 cases in community infection group produce highly resistant to penicillin-type drugs ,but were not obvious resistance to other types of antibiotics .Conclusion Multi-drug resistance problems are serious in the pneumonia children who infected KP and the extended-spectrum β-lactamase en-zyme is positive .Infected children should be treated differently in the selection of antibiotics in the treatment of infection in commu-nity and nosocomial .
2.Determining Osteogenic Differentiation Efficacy of Pluripotent Stem Cells by Telomerase Activity.
Siqi ZHANG ; Yuhua SUN ; Yi SUI ; Yan LI ; Zuyuan LUO ; Xu XIAO ; Ping ZHOU ; Shicheng WEI
Tissue Engineering and Regenerative Medicine 2018;15(6):751-760
BACKGROUND: Bone tissue engineering based on pluripotent stem cells (PSCs) is a new approach to deal with bone defects. Protocols have been developed to generate osteoblasts from PSCs. However, the low efficiency of this process is still an important issue that needs to be resolved. Many studies have aimed to improve efficiency, but developing accurate methods to determine efficacy is also critical. Studies using pluripotency to estimate efficacy are rare. Telomerase is highly associated with pluripotency. METHODS: We have described a quantitative method to measure telomerase activity, telomeric repeat elongation assay based on quartz crystal microbalance (QCM). To investigate whether this method could be used to determine the efficiency of in vitro osteogenic differentiation based on pluripotency, we measured the pluripotency pattern of cultures through stemness gene expression, proliferation ability and telomerase activity, measured by QCM. RESULTS: We showed that the pluripotency pattern determined by QCM was similar to the patterns of proliferation ability and gene expression, which showed a slight upregulation at the late stages, within the context of the general downregulation tendency during differentiation. Additionally, a comprehensive gene expression pattern covering nearly every stage of differentiation was identified. CONCLUSION: Therefore, this assay may be powerful tools for determining the efficiency of differentiation systems based on pluripotency. In this study, we not only introduce a new method for determining efficiency based on pluripotency, but also provide more information about the characteristics of osteogenic differentiation which help facilitate future development of more efficient protocols.
Bone and Bones
;
Down-Regulation
;
Gene Expression
;
In Vitro Techniques
;
Methods
;
Mouse Embryonic Stem Cells
;
Osteoblasts
;
Pluripotent Stem Cells*
;
Quartz Crystal Microbalance Techniques
;
Telomerase*
;
Up-Regulation
3.Double-negative T cells: a promising avenue of adoptive cell therapy in transplant oncology.
Zhihang HU ; Modan YANG ; Hao CHEN ; Chiyu HE ; Zuyuan LIN ; Xinyu YANG ; Huigang LI ; Wei SHEN ; Di LU ; Xiao XU
Journal of Zhejiang University. Science. B 2023;24(5):387-396
Tumor recurrence is one of the major life-threatening complications after liver transplantation for liver cancer. In addition to the common mechanisms underlying tumor recurrence, another unavoidable problem is that the immunosuppressive therapeutic regimen after transplantation could promote tumor recurrence and metastasis. Transplant oncology is an emerging field that addresses oncological challenges in transplantation. In this context, a comprehensive therapeutic management approach is required to balance the anti-tumor treatment and immunosuppressive status of recipients. Double-negative T cells (DNTs) are a cluster of heterogeneous cells mainly consisting of two subsets stratified by T cell receptor (TCR) type. Among them, TCRαβ+ DNTs are considered to induce immune suppression in immune-mediated diseases, while TCRγδ+ DNTs are widely recognized as tumor killers. As a composite cell therapy, healthy donor-derived DNTs can be propagated to therapeutic numbers in vitro and applied for the treatment of several malignancies without impairing normal tissues or being rejected by the host. In this work, we summarized the biological characteristics and functions of DNTs in oncology, immunology, and transplantation. Based on the multiple roles of DNTs, we propose that a new balance could be achieved in liver transplant oncology using them as an off-the-shelf adoptive cell therapy (ACT).
Humans
;
T-Lymphocytes
;
Immunotherapy, Adoptive
;
Neoplasm Recurrence, Local
;
Transplantation, Homologous
;
Cell- and Tissue-Based Therapy
4.A genome sequence of novel SARS-CoV isolates: the genotype, GD-Ins29, leads to a hypothesis of viral transmission in South China.
E'de QIN ; Xionglei HE ; Wei TIAN ; Yong LIU ; Wei LI ; Jie WEN ; Jingqiang WANG ; Baochang FAN ; Qingfa WU ; Guohui CHANG ; Wuchun CAO ; Zuyuan XU ; Ruifu YANG ; Jing WANG ; Man YU ; Yan LI ; Jing XU ; Bingyin SI ; Yongwu HU ; Wenming PENG ; Lin TANG ; Tao JIANG ; Jianping SHI ; Jia JI ; Yu ZHANG ; Jia YE ; Cui'e WANG ; Yujun HAN ; Jun ZHOU ; Yajun DENG ; Xiaoyu LI ; Jianfei HU ; Caiping WANG ; Chunxia YAN ; Qingrun ZHANG ; Jingyue BAO ; Guoqing LI ; Weijun CHEN ; Lin FANG ; Changfeng LI ; Meng LEI ; Dawei LI ; Wei TONG ; Xiangjun TIAN ; Jin WANG ; Bo ZHANG ; Haiqing ZHANG ; Yilin ZHANG ; Hui ZHAO ; Xiaowei ZHANG ; Shuangli LI ; Xiaojie CHENG ; Xiuqing ZHANG ; Bin LIU ; Changqing ZENG ; Songgang LI ; Xuehai TAN ; Siqi LIU ; Wei DONG ; Jun WANG ; Gane Ka-Shu WONG ; Jun YU ; Jian WANG ; Qingyu ZHU ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(2):101-107
We report a complete genomic sequence of rare isolates (minor genotype) of the SARS-CoV from SARS patients in Guangdong, China, where the first few cases emerged. The most striking discovery from the isolate is an extra 29-nucleotide sequence located at the nucleotide positions between 27,863 and 27,864 (referred to the complete sequence of BJ01) within an overlapped region composed of BGI-PUP5 (BGI-postulated uncharacterized protein 5) and BGI-PUP6 upstream of the N (nucleocapsid) protein. The discovery of this minor genotype, GD-Ins29, suggests a significant genetic event and differentiates it from the previously reported genotype, the dominant form among all sequenced SARS-CoV isolates. A 17-nt segment of this extra sequence is identical to a segment of the same size in two human mRNA sequences that may interfere with viral replication and transcription in the cytosol of the infected cells. It provides a new avenue for the exploration of the virus-host interaction in viral evolution, host pathogenesis, and vaccine development.
Base Sequence
;
China
;
Cluster Analysis
;
Gene Components
;
Genetic Variation
;
Genome, Viral
;
Genotype
;
Molecular Sequence Data
;
Phylogeny
;
Reverse Transcriptase Polymerase Chain Reaction
;
SARS Virus
;
genetics
;
Sequence Analysis, DNA
;
Severe Acute Respiratory Syndrome
;
genetics