1.Research progress on NLRP3 inflammasome-mediated regulation of tissue remodeling during orthodontic tooth movement
WANG Jiajia ; ZHANG Jiangtao ; ZENG Fulei
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(2):169-176
NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome mediates inflammation, induces pyroptosis, and regulates periodontal tissue remodeling through the maturation and secretion of its downstream cysteine protease 1 (Caspase-1)-dependent pro-inflammatory cytokines, interleukin (IL)-1β and IL-18. Orthodontic force mediates the aseptic inflammation of periodontal tissues and triggers adaptive alteration of periodontal tissues, thereby promoting the movement and stability of orthodontic teeth. NLRP3 inflammasome plays an important role in orthodontic tooth movement and causes periodontal tissue inflammation and orthodontic inflammatory root resorption in orthodontic patients. Literature review suggests that NLRP3 inflammasome is involved in the activation and differentiation of periodontal ligament fibroblasts, periodontal ligament stem cells, macrophages, osteoblasts, and osteoclasts in orthodontic tooth mobile tissue remodeling. Additionally, it targets the upstream nuclear factor kappa-B signaling pathway; downstream effectors, such as Caspase-1, IL-1β, and IL-18; and the NLRP3 inflammasome components for regulating tooth movement as well as treating and preventing orthodontics-associated periodontitis and orthodontic-induced inflammatory root resorption. Future studies can be focused on the specific mechanism of NLRP3 inflammasome tissue modification during orthodontic tooth movement. This article reviews the effects and regulatory mechanisms of the NLRP3 inflammasome signaling pathway on the corresponding tissue remodeling during orthodontic tooth movement.
2.Mechanism of Shengmai Injection Against Cerebral Ischemia Based on Proteomics
Jingtong LIU ; Shaowei HU ; Mengli CHANG ; Jing XU ; Qingqing CAI ; Xinghong LI ; Liying TANG ; Huanhuan WANG ; Hongwei WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):57-67
ObjectiveTo evaluate pharmacological effects of Shengmai injection(SMI)on cerebral ischemia and study its neuroprotective mechanism. MethodsMale specific pathogen-free (SPF) Sprague-Dawley (SD) rats were randomly divided into a sham group, a model group, a low-dose SMI group(3 mL·kg-1), a middle-dose SMI group(6 mL·kg-1), a high-dose SMI group(12 mL·kg-1), and a Ginaton group(4 mL·kg-1)according to the random number table method, with 12 rats in each group. The rat model of cerebral ischemia-reperfusion(MCAO/R)was prepared via the suture method. The administration groups were intraperitoneally injected with corresponding concentrations of SMI or Ginaton injection after reperfusion, which was conducted for 3 consecutive days. The sham group and model group were administered the equivalent volume of physiological saline. The pharmacological effects of SMI on brain injury in MCAO/R rats were evaluated by neurological function scores, cerebral infarction area, hematoxylin-eosin (HE) staining, Nissl staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, and Western blot. The dominant link and key protein of SMI treating cerebral injury were explored using proteomic analysis. The related mechanisms of SMI were further validated using enzyme-linked immunosorbent assay (ELISA), Western blot, and chloride ion fluorescence probe with oxygen-glucose deprivation/reoxygenation(OGD/R)-treated PC12 cells and MCAO/R rats. ResultsCompared with the sham group, the model group showed significantly increased neurological function scores, cerebral infarction area, neuronal apoptosis rate, and expression levels of apoptosis related proteins (P<0.05, P<0.01)and significantly decreased density of Nissl bodies and neurons(P<0.01). Compared with the model group, the SMI groups exhibited significantly decreased neurological function scores, cerebral infarction area, neuronal apoptosis rate, and expression levels of apoptosis related proteins (P<0.05, P<0.01)and significantly increased density of Nissl bodies and neurons (P<0.05). The proteomic analysis results showed that oxidative stress and inflammatory response were important processes of SMI intervening in MCAO/R injury, and the chloride intracellular channel protein 1 (CLIC1) was one of key proteins in its action network. The levels of representative indicators of oxidative stress and inflammatory response in the MCAO/R rats of the SMI groups were significantly reduced, compared with those in the model group(P<0.05, P<0.01), and the expression levels of CLIC1 and downstream NOD-like receptor protein 3 (NLRP3) decreased (P<0.01). In addition, the experimental results based on the OGD/R PC12 cells showed that SMI significantly increased the cell survival rate(P<0.01) and significantly decreased the intracellular chloride ion concentration(P<0.05). ConclusionSMI has neuroprotective effects. Oxidative stress and inflammatory response are key processes of SMI intervening in MCAO/R injury. The potential mechanism is closely related to the regulation of CLIC1.
3.Advances in Mouse Models of Amyotrophic Lateral Sclerosis
Lianlian LUO ; Yanchun YUAN ; Junling WANG ; Guangsen SHI
Laboratory Animal and Comparative Medicine 2025;45(3):290-299
Amyotrophic lateral sclerosis (ALS) is an irreversible, fatal neurodegenerative disorder whose incidence is positively correlated with the aging population. ALS is characterized by the progressive loss of motor neurons, leading to muscle weakness, atrophy, and ultimately respiratory failure. The pathogenesis of ALS involves multiple factors, including genetic and environmental influences, with genetic factors playing a particularly significant role. To date, several causative genes have been identified in ALS, such as the Cu/Zn superoxide dismutase 1 (Cu/Zn SOD1, also known as SOD1) gene, transactive response DNA-binding protein 43 (TDP-43) gene, fused in sarcoma (FUS) gene, and chromosome open reading frame 72 (C9orf72). Mutations in these genes have been found not only in familial ALS but also in sporadic ALS. Based on the identified ALS risk genes, various ALS animal models have been established through multiple approaches, including transgenic models, gene knockout/knock-in models, and adeno-associated virus-mediated overexpression models. These models simulate some typical pathological features of human ALS, such as motor neuron loss, ubiquitinated inclusions, and neuromuscular junction degeneration. However, these models still have limitations: (1) single-gene mutation models are insufficient to fully replicate the complex multi-factorial pathogenesis of sporadic ALS; (2) significant differences in microenvironmental regulation mechanisms and the rate of neurodegeneration between model organisms and humans may affect the accurate reproduction of disease phenotypes and the reliable evaluation of drug efficacy. To better understand the pathogenesis of ALS and promote the development of effective therapies, constructing and optimizing ALS animal models is crucial. This review aims to summarize commonly used ALS gene mutation mouse models, analyze their phenotypes and pathological characteristics, including transgenic mouse models, gene knockout/knock-in mouse models, and adeno-associated virus-mediated overexpression mouse models, and further discuss their specific applications in ALS pathogenesis research and drug development by comparing the advantages and limitations of each model.
4.Advances in Mouse Models of Amyotrophic Lateral Sclerosis
Lianlian LUO ; Yanchun YUAN ; Junling WANG ; Guangsen SHI
Laboratory Animal and Comparative Medicine 2025;45(3):290-299
Amyotrophic lateral sclerosis (ALS) is an irreversible, fatal neurodegenerative disorder whose incidence is positively correlated with the aging population. ALS is characterized by the progressive loss of motor neurons, leading to muscle weakness, atrophy, and ultimately respiratory failure. The pathogenesis of ALS involves multiple factors, including genetic and environmental influences, with genetic factors playing a particularly significant role. To date, several causative genes have been identified in ALS, such as the Cu/Zn superoxide dismutase 1 (Cu/Zn SOD1, also known as SOD1) gene, transactive response DNA-binding protein 43 (TDP-43) gene, fused in sarcoma (FUS) gene, and chromosome open reading frame 72 (C9orf72). Mutations in these genes have been found not only in familial ALS but also in sporadic ALS. Based on the identified ALS risk genes, various ALS animal models have been established through multiple approaches, including transgenic models, gene knockout/knock-in models, and adeno-associated virus-mediated overexpression models. These models simulate some typical pathological features of human ALS, such as motor neuron loss, ubiquitinated inclusions, and neuromuscular junction degeneration. However, these models still have limitations: (1) single-gene mutation models are insufficient to fully replicate the complex multi-factorial pathogenesis of sporadic ALS; (2) significant differences in microenvironmental regulation mechanisms and the rate of neurodegeneration between model organisms and humans may affect the accurate reproduction of disease phenotypes and the reliable evaluation of drug efficacy. To better understand the pathogenesis of ALS and promote the development of effective therapies, constructing and optimizing ALS animal models is crucial. This review aims to summarize commonly used ALS gene mutation mouse models, analyze their phenotypes and pathological characteristics, including transgenic mouse models, gene knockout/knock-in mouse models, and adeno-associated virus-mediated overexpression mouse models, and further discuss their specific applications in ALS pathogenesis research and drug development by comparing the advantages and limitations of each model.
5.Exploration of the practical path of integrating red doctor culture into ideological and political education in medical colleges and universities
Yang SHEN ; Li WANG ; Zailei ZHANG
Chinese Medical Ethics 2025;38(7):890-896
The Master Plan on Building China into a Leading Country in Education (2024-2035) has made important arrangements for“expanding the space and battlefield for practical and online education”and“fully utilizing the educational function of red resources”. Red medicine culture is a cultural system with strong vitality and excellent genes created by the people led by the CPC in the process of creating health care undertakings. In the context of the new era, how to effectively promote the integration of red medicine culture into the ideological and political education in medical colleges and universities to enhance medical students’ sense of professional identity, responsibility, and mission has become a key issue in the current medical education reform. By analyzing the necessity and basic principles of integrating red doctor culture into ideological and political education in medical colleges and universities, a practical path based on the “three horizontal integrations and three vertical dimensions” model was proposed. Specifically, this involves horizontally promoting textbook construction, classroom teaching, and ideological and political practice, while vertically deepening pre-class preparation, classroom teaching reform, and post-class evaluation, thereby building a systematic and operational red doctor culture integration system as well as providing theoretical support and practical guidance for the cultivation of medical talents in the new era.
6.Clinical and pathological analysis of pulmonary endometriosis: Three cases report
Dan YUAN ; Jinhua XIA ; Qing JI ; Jinjing WANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(06):882-886
Pulmonary endometriosis (PEM) is a rare disease with diverse clinical manifestations, most commonly presenting as hemoptysis, while patients presenting solely with pulmonary nodules are less common. Here, we report three female patients (aged 32, 19, and 46 years, respectively). One patient sought medical attention due to hemoptysis during menstruation, while the other two had no obvious symptoms and were found to have pulmonary nodules during routine physical examinations. Two patients had a history of cesarean section, and one had a history of miscarriage. Pathologically, one patient of PEM showed extensive hemorrhage in the alveolar spaces, with fragmented endometrial glandular epithelium observed within the hemorrhagic foci. The other two patients exhibited proliferative endometrial glands and stroma, surrounded by old hemorrhage. Immunohistochemistry revealed that the endometrial glands and stroma in all three patients were positive for estrogen receptor, progesterone receptor, and vimentin, with CD10 positivity in the endometrial stroma. All three patients were definitively diagnosed as PEM by pathology and underwent thoracoscopic pulmonary wedge resection. Follow-up periods were 18, 31, and 49 months, respectively, with no recurrence observed in any of the patients.
7.Effect and mechanism of dabrafenib combined with tremelimumab on melanoma
Xiaosong WANG ; Yunjiao LIU ; Jin ZHOU ; Qianqian ZHANG ; Lingjie MENG
Journal of Pharmaceutical Practice and Service 2025;43(10):496-502
Objective To investigate the effect and mechanism of dabrafenib (DAB) combined with tremelimumab (TREM) on melanoma. Methods The effects of DAB combined with TREM on cell viability, cytotoxicity and cell migration of A375 cells were evaluated by Cell Counting Kit-8 (CCK-8) method, lactate dehydrogenase (LDH) method and scratch assay. The levels of reactive oxygen species (ROS), adenosine triphosphate (ATP), malondialdehyde (MDA), and superoxide dismutase (SOD) were detected to evaluate the effects of combined drugs on oxidative stress and energy metabolism. In addition, A375 tumor-bearing nude mice model was used to evaluate the inhibitory effect of the combined treatment on tumor growth in vivo, and the degree of cell apoptosis and cell proliferation in tumor tissues were analyzed by terminal deoxynucleotidyl transferase-mediated dutP Nick end labeling (TUNEL) and proliferating cell nuclear antigen (PCNA) immunohistochemical staining. Results The combined treatment significantly inhibited the survival rate and migration ability of A375 cells and enhanced the cytotoxicity. The combined intervention also significantly increased ROS level, decreased ATP, SOD and MDA levels. It effectively inhibited tumor growth in tumor-bearing nude mice, increased the apoptosis rate of tumor cells and inhibited cell proliferation. Conclusion DAB combined with TREM may improve the therapeutic effect of melanoma by enhancing oxidative stress, inhibiting energy metabolism, and promoting cell apoptosis. This combination therapy may provide a new therapeutic strategy to overcome the limitations of singledrug therapy.
8.The mechanism of extract of ginkgo biloba inducing mitochondrial autophagy in breast cancer cells MCF-7
Jianqiang SHAO ; Peng WANG ; Jie BAI ; Huixin LI ; Zunyi WANG ; Zhihong XU
Journal of International Oncology 2024;51(2):65-72
Objective:To investigate the mechanism of extract of ginkgo biloba (EGB) on mitochondrial autophagy in breast cancer cells MCF-7.Methods:Breast cancer MCF-7 cells were divided into four groups. EGB with mass concentrations of 40, 80, 120 mg/L was used to incubate breast cancer MCF-7 cells for 24 h or 48 h, as a low concentration group of EGB, a medium concentration group of EGB, and a high concentration group of EGB. Breast cancer MCF-7 cells without intervention were taken as control group. Cell proliferation was measured using MTT assay; Flow cytometry was used to detect cell apoptosis; Immunofluorescence assay was used to determine the contents of prostacyclin (P62), microtubule-associated protein light chain 3Ⅱ (LC3Ⅱ), and caspase-3; The levels of multidrug resistance-associated protein 1 (MRP1), multidrug resistance gene 1 (MDR1) and breast cancer resistance protein (BCRP) were identified by PCR; Western blotting was used to detect the expression of extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), p-ERK, and p-MAPK proteins in cells.Results:The results of MTT assay for cell proliferation showed that cell proliferation at 24 h in control group, EGB low, medium and high concentration groups were 0.95±0.14, 0.65±0.09, 0.51±0.07, 0.37±0.04, respectively, with a statistically significant difference ( F=43.13, P<0.001), cell proliferation at 48 h were 1.32±0.19, 0.54±0.08, 0.32±0.05, 0.15±0.02, respectively, with a statistically significant difference ( F=141.30, P<0.001). Compared with 24 h, cell proliferation was decreased in EGB low, medium and high concentration groups at 48 h (all P<0.05). Pairwise comparison showed that EGB treatment significantly decreased MCF-7 cell viability and cell proliferation was decreased in turn at 24 and 48 h in control group, low, medium, high EGB groups (all P<0.05). Flow cytometry analysis revealed that the apoptosis rates of MCF-7 cells in control group, EGB low, medium and high concentration groups were 2.12%±0.23%, 9.28%±0.45%, 15.17%±1.28% and 22.21%±2.32%, respectively, with a statistically significant difference ( F=128.80, P<0.001). Pairwise comparison showed that the apoptosis rate of control group, EGB low, medium and high concentration groups were increased in turn (all P<0.05). The results of immunofluorescence assay showed that the protein relative expression levels of P62 protein in MCF-7 cells of control group, EGB low, medium and high concentration groups were 3.34±0.52, 2.85±0.47, 2.02±0.18 and 1.08±0.21, respectively, with a statistically significant difference ( F=41.55, P<0.001). LC3Ⅱ protein relative expression levels were 0.24±0.05, 1.02±0.14, 1.47±0.26, 1.95±0.21, respectively, with a statistically significant difference ( F=94.82, P<0.001). The relative expression levels of caspase-3 protein were 0.25±0.03, 0.68±0.21, 1.12±0.17 and 1.65±0.23, respectively, with a statistically significant difference ( F=68.09, P<0.001). Pairwise comparison showed that LC3Ⅱ and caspase-3 protein expression levels were increased in turn in control group, EGB low, medium and high concentration groups, while P62 protein expression levels were decreased in turn (all P<0.05). The PCR experiment results showed that the MRP1 mRNA level of MCF-7 cells in control group, EGB low, medium and high concentration groups were 1.06±0.14, 0.83±0.18, 0.71±0.11, 0.52±0.08, respectively, with a statistically significant difference ( F=17.41, P<0.001). The mRNA levels of MDR1 were 1.14±0.17, 0.75±0.13, 0.60±0.09, 0.48±0.06, respectively, with a statistically significant difference ( F=34.40, P<0.001). BCRP mRNA levels were 1.09±0.11, 0.88±0.13, 0.69±0.07, 0.57±0.05, respectively, with a statistically significant difference ( F=34.13, P<0.001). Pairwise comparison showed that the levels of MRP1, MDR1 and BCRP mRNA were decreased in turn in control group, EGB low, medium and high concentration groups (all P<0.05). The results of Western blotting showed that the expression of ERK in MCF-7 cells in control group, EGB low, medium and high concentration groups were 2.54±0.38, 1.89±0.25, 1.55±0.21, 1.12±0.16, respectively, with a statistically significant difference ( F=31.18, P<0.001). MAPK expression were 2.47±0.34, 1.96±0.29, 1.63±0.27, 1.20±0.24, respectively, with a statistically significant difference ( F=20.90, P<0.001). p-ERK expression were 2.03±0.29, 1.74±0.21, 1.45±0.11, 1.18±0.24, respectively, with a statistically significant difference ( F=16.31, P<0.001). p-MAPK expression were 2.26±0.47, 1.90±0.41, 1.61±0.33, 1.35±0.16, respectively, with a statistically significant difference ( F=7.01, P=0.002). Pairwise comparison showed that the expressions of ERK, MAPK, p-ERK and p-MAPK in control group, EGB low, medium and high concentration groups were decreased in turn (all P<0.05) . Conclusion:EGB can inhibit the proliferation of breast cancer MCF-7 cells, promote the apoptosis of MCF-7 cells, decrease the expression of P62 protein, increase the expression of LC3Ⅱ and caspase-3 protein, induce mitochondrial autophagy.
9.Mechanism of ginkgo flavonoid aglycone against doxorubicin-induced cardiotoxicity
Ying CAI ; Li QIAN ; Kailiang WANG ; Qin LI ; Chunhua LIU ; Jia SUN ; Jie PAN ; Yongjun LI ; Yuan LU
China Pharmacy 2024;35(6):659-664
OBJECTIVE To investigate the potential mechanism of the effect of ginkgo flavone aglycone (GA) against doxorubicin (DOX)-induced cardiotoxicity. METHODS The male ICR mice were randomized into control group (CON group), model group (DOX group) and GA+DOX group (GDOX group), with 12 mice in each group. The DOX group was injected with DOX solution at a dose of 3 mg/kg via tail vein every other day, and the GDOX group was given GA suspension intragastrically at a dose of 100 mg/kg every day+DOX solution at a dose of 3 mg/kg via tail vein every other day, for 15 consecutive days. After the end of administration, the serum levels of aspartate aminotransferase(AST), creatine kinase(CK), creatine kinase isoenzyme(CK- MB) and lactate dehydrogenase(LDH) in mice were detected in each group. Based on the metabolomics method, UHPLC-Q- Exactive Orbitrap HRMS method was used; based on principal component analysis (PCA) and orthogonal partial least squares- discriminant analysis (OPLS-DA), the differentially expressed metabolites (DEMs) were screened using the criteria of variable importance in the projection≥1, fold change of peak area>1 and P<0.05; biological analysis was conducted based on databases such as HMDB and PubChem. RESULTS Compared with CON group, serum levels of AST, CK, CK-MB and LDH were increased significantly in DOX group (P<0.05); compared with DOX group, the serum levels of the above indicators (except for CK-MB) were decreased significantly in GDOX group (P<0.05). PCA and OPLS-DA showed that myocardial tissue samples of CON group, DOX group and GDOX group were isolated completely. After database matching, 37 common DEMs were identified, among which 17 DEMs were significantly up-regulated in the DOX group and significantly down- regulated in the GDOX group, and 8 DEMs were significantly down-regulated in the DOX group and significantly up-regulated in the GDOX group; pathway enrichment involved the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, linoleic acid metabolism, taurine and hypotaurine metabolism; the key metabolites in the above pathways included docosahexaenoic acid, arachidonic acid, phosphatidylcholine (16∶0/18∶3) and taurine. CONCLUSIONS GA may regulate the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism and other metabolic pathways by acting on the core metabolites such as docosahexaenoic acid and arachidonic acid, thus alleviating the cardiotoxic effects of DOX.
10.Effect of PACS-2 on the development of Alzheimer's disease
Yanyun WANG ; Qunying YE ; Jun QIAN ; Zhipeng LIU ; Hongbo LUO ; Yun LI
China Modern Doctor 2024;62(5):11-15
Objective To investigate the involvement of phosphofurin acidic cluster sorting protein-2(PACS-2)in mitochondrial function and apoptosis in N2a/APP695swe cells and further explore the role and significance of PACS-2 in the development of Alzheimer's disease(AD).Methods The CCK8 method was used to analyze the cell survival rate of N2a/APP695swe cells treated with different concentrations of tetrahydroxy stilbene glycoside(TSG)for 48h and to select the appropriate concentration of TSG for subsequent experiments.N2a/WT cells and N2a/APP695swe cells were routinely cultured in vitro,and the experimental cells were divided into 3 groups:blank control group(WT group):N2a/WT cells;model group(APP group):N2a/APP695swe cells;treatment group(TSG group):N2a/APP695swe cells with appropriate concentrations of TSG intervention.TUNEL method to observe apoptosis by fluorescence microscopy;JC-1 method for flow detection of cellular mitochondrial membrane potential;WB to detect protein expression of PACS-2;RT-qPCR to detect PACS-2 mRNA expression.Results CCK8 method was used to analyze the cell survival rate of different concentrations of TSG acting on cells after 48h:the protective effect of 100 μmol/L TSG was the most significant and the difference was statistically significant(P<0.01).The TUNEL method of fluorescence microscopy observed the apoptosis:compared with the WT group,the apoptosis rate of APP group was increased,compared with the APP group,the apoptosis rate of TSG group was decreased,and the differences were statistically significant(P<0.05).The JC-1 method was used to detect the mitochondrial membrane potential of cells:compared with the WT group,the membrane potential of APP group was decreased,compared with the APP group,the membrane potential of TSG group was increased,and the differences were statistically significant(P<0.05);Western blot(WB)detection of PACS-2 protein expression:compared with the WT group,PACS-2 expression was significantly higher in the APP group,and compared with the APP group,PACS-2 expression was significantly lower in the TSG group,with statistically significant differences(P<0.05);The RT-qPCR detected the mRNA expression of PACS-2:the expression of PACS-2 was elevated in the APP group compared with the WT group and decreased in the TSG group compared with the APP group,with statistically significant differences(P<0.05).Conclusion PACS-2 has an important role in the development of AD,and its upregulation may promote the development of AD.The cerebroprotective drug TSG may exert cytoprotective effects by downregulating PACS-2 to inhibit apoptosis and improve mitochondrial function in AD model cells.


Result Analysis
Print
Save
E-mail