1.Puerarin alleviates rheumatoid arthritis in rats by modulating TAK1-mediated TLR4/NF-κB signaling pathway.
Maiyuan XU ; Ni LI ; Jiayi LI ; Tao ZHANG ; Liwen MA ; Tao LIN ; Haonan YU ; Ning WU ; Zunqiu WU ; Li HUANG
Journal of Southern Medical University 2025;45(10):2231-2239
OBJECTIVES:
To explore the therapeutic mechanism of puerarin for alleviating synovitis in rats with collagen-induced arthritis (CIA).
METHODS:
In a SD rat model of CIA, we tested the effects of daily gavage of puerarin at low, moderate and high doses (10, 30, and 100 mg/kg, respectively) for 3 weeks, with tripterygium glycosides (GTW, 10 mg/kg) as the positive control, on swelling in the hind limb joints regions evaluated by arthritis index scoring. Mass fraction of the liver of the rats was calculated, and pathologies in joint synovial membrane were observed with HE staining. The expressions of transforming growth factor β‑activated kinase-1 (TAK1), Toll-like receptor 4 (TLR4), and nuclear factor kappa-Bp65 (NF‑κB p65) at the mRNA and protein levels in the synovial tissues were detected using Real-time PCR and Western blotting.
RESULTS:
Compared with those in the model group, the rats in GTW group and high-dose puerarin group showed significantly reduced mass fraction of the liver. Treatment with GTW and puerarin at the 3 doses all significantly alleviated plantar swelling, lowered arthritis index scores, and improved synovitis in CIA rats (P<0.05), and the effects of puerarin showed an obvious dose dependence. Both GTW and puerarin treatments significantly lowered TAK1, TLR4, and NF‑κB p65 mRNA and protein expressions in the synovium of CIA rats.
CONCLUSIONS
Puerarin alleviates synovium damages in CIA rats possibly by suppressing the TLR4/NF‑κB signaling pathway via downregulating TAK1 expression.
Animals
;
Toll-Like Receptor 4/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
MAP Kinase Kinase Kinases/metabolism*
;
Signal Transduction/drug effects*
;
Arthritis, Rheumatoid/drug therapy*
;
NF-kappa B/metabolism*
;
Isoflavones/therapeutic use*
;
Male
;
Arthritis, Experimental/drug therapy*
;
Transcription Factor RelA/metabolism*
;
Synovial Membrane/metabolism*
2.The Miao medicine Sidaxue alleviates rheumatoid arthritis in rats possibly by downregulating matrix metalloproteinases
Yunfei LI ; Jingyi YANG ; Ying ZHANG ; Caixia ZHANG ; Yuxiang WEI ; Yiying WANG ; Ning WU ; Jianfei SUN ; Zunqiu WU
Journal of Southern Medical University 2024;44(4):739-747
Objective To explore the inhibitory effect of Sidaxue, a traditional Miao herbal medicine formula, on articular bone and cartilage destruction and synovial neovascularization in rats with collagen-induced arthritis (CIA). Methods In a SD rat model of CIA, we tested the effects of daily gavage of Sidaxue at low, moderate and high doses (10, 20, and 40 g/kg, respectively) for 21 days, with Tripterygium glycosides (GTW) as the positive control, on swelling in the hind limb plantar regions by arthritis index scoring. Pathologies in joint synovial membrane of the rats were observed with HE staining, and serum TNF-α and IL-1β levels were detected with ELISA. The expressions of NF-κB p65, matrix metalloproteinase 1 (MMP1), MMP2 and MMP9 at the mRNA and protein levels in the synovial tissues were detected using real-time PCR and Western blotting. Network pharmacology analysis was conducted to identify the important target proteins in the pathways correlated with the therapeutic effects of topical Sidaxue treatment for RA, and the core target proteins were screened by topological analysis. Results Treatment with GTW and Sidaxue at the 3 doses all significantly alleviated plantar swelling, lowered arthritis index scores, improved cartilage and bone damage and reduced neovascularization in CIA rats (P<0.05), and the effects of Sidaxue showed a dose dependence. Both GTW and Sidaxue treatments significantly lowered TNF-α, IL-1β, NF-κB p65, MMP1, MMP2, and MMP9 mRNA and protein expressions in the synovial tissues of CIA rats (P<0.05). Network pharmacological analysis identified MMPs as the core proteins associated with topical Sidaxue treatment of RA. Conclusion Sidaxue alleviates articular bone and cartilage damages and reduces synovial neovascularization in CIA rats possibly by downregulating MMPs via the TNF-α/IL-1β/NF-κB-MMP1, 2, 9 signaling pathway, and MMPs probably plays a key role in mediating the effect of Sidaxue though the therapeutic pathways other than oral administration.
3.The Miao medicine Sidaxue alleviates rheumatoid arthritis in rats possibly by downregulating matrix metalloproteinases
Yunfei LI ; Jingyi YANG ; Ying ZHANG ; Caixia ZHANG ; Yuxiang WEI ; Yiying WANG ; Ning WU ; Jianfei SUN ; Zunqiu WU
Journal of Southern Medical University 2024;44(4):739-747
Objective To explore the inhibitory effect of Sidaxue, a traditional Miao herbal medicine formula, on articular bone and cartilage destruction and synovial neovascularization in rats with collagen-induced arthritis (CIA). Methods In a SD rat model of CIA, we tested the effects of daily gavage of Sidaxue at low, moderate and high doses (10, 20, and 40 g/kg, respectively) for 21 days, with Tripterygium glycosides (GTW) as the positive control, on swelling in the hind limb plantar regions by arthritis index scoring. Pathologies in joint synovial membrane of the rats were observed with HE staining, and serum TNF-α and IL-1β levels were detected with ELISA. The expressions of NF-κB p65, matrix metalloproteinase 1 (MMP1), MMP2 and MMP9 at the mRNA and protein levels in the synovial tissues were detected using real-time PCR and Western blotting. Network pharmacology analysis was conducted to identify the important target proteins in the pathways correlated with the therapeutic effects of topical Sidaxue treatment for RA, and the core target proteins were screened by topological analysis. Results Treatment with GTW and Sidaxue at the 3 doses all significantly alleviated plantar swelling, lowered arthritis index scores, improved cartilage and bone damage and reduced neovascularization in CIA rats (P<0.05), and the effects of Sidaxue showed a dose dependence. Both GTW and Sidaxue treatments significantly lowered TNF-α, IL-1β, NF-κB p65, MMP1, MMP2, and MMP9 mRNA and protein expressions in the synovial tissues of CIA rats (P<0.05). Network pharmacological analysis identified MMPs as the core proteins associated with topical Sidaxue treatment of RA. Conclusion Sidaxue alleviates articular bone and cartilage damages and reduces synovial neovascularization in CIA rats possibly by downregulating MMPs via the TNF-α/IL-1β/NF-κB-MMP1, 2, 9 signaling pathway, and MMPs probably plays a key role in mediating the effect of Sidaxue though the therapeutic pathways other than oral administration.

Result Analysis
Print
Save
E-mail