1.Clinical Utilization of Brain Magnetic Resonance Imaging-Based Artificial Intelligence Software in the Spectrum of Alzheimer’s Disease: Case Series
Hye Weon KIM ; ZunHyan RIEU ; Donghyeon KIM ; Hyun Kook LIM
Journal of Korean Neuropsychiatric Association 2023;62(2):86-94
Brain magnetic resonance imaging (MRI) is a key tool for diagnosing neurodegenerative diseases such as Alzheimer’s disease (AD). However, MRI analysis by visual interpretation and reading can be time-consuming and requires specialized expertise. Brain MRI-based artificial intelligence (AI) software has been developed to aid clinicians in diagnosing and managing neurodegenerative disorders, including AD. This study demonstrates the clinical application of the AI software for volumetric analysis of brain MRI scans in patients within the AD spectrum. In the current case series, four patients with memory impairment visited the memory clinic of Yeouido St. Mary’s Hospital. They underwent a series of assessments, including automated analysis of AI-based software for brain MRI volumetric measurements. The information provided by the software was highly accurate, consistent, and was especially valuable for the early diagnosis and monitoring of disease progression. The results imply that this technology potentially aids in the early detection and management of AD, making it a valuable tool for clinicians in the diagnosis of neurodegenerative diseases.
2.A Novel Landmark-based Semi-supervised Deep Learning Method for Cerebral Aneurysm Detection Using TOF-MRA
Hyeonsik YANG ; Jieun PARK ; Eunyoung Regina KIM ; Minho LEE ; ZunHyan RIEU ; Donghyeon KIM ; Beomseok SOHN ; Kijeong LEE
Journal of the Korean Neurological Association 2024;42(4):322-330
Background:
Time-of-flight (TOF) magnetic resonance angiography (MRA) is widely used to identify aneurysm in human brain. Various deep learning models have been developed to help TOF-MRA reading in the field. The performance of those TOF-MRA analysis tools, however, faces several limitations in cerebral aneurysm detection. These challenges primarily come from the fact that cerebral aneurysms occupy less than 0.1% of the total TOF-MRA voxel size. This study aims to improve the efficiency of cerebral aneurysm detection by developing a landmark-based semi-supervised deep learning method, a technology that automatically generates landmark boxes in areas with a high probability of cerebral aneurysm occurrence.
Methods:
We used data from a total of 500 aneurysm-positive and 50 aneurysm-negative subjects. The aneurysm detection model was developed using clustering and a dilated residual network.
Results:
When the number of landmarks was ten and their size was 36 mm3, the best performance was achieved in our experiment. Although landmark occupies a small portion of the entire image, up to 98.2% of landmarks were cerebral aneurysms. The sensitivity of the model for cerebral aneurysm detection was 83.0%, with a false positive rate of 3.4%.
Conclusions
This study developed a deep learning model using TOF-MRA image. This model generates the most suitable landmarks for each individual, excluding unnecessary areas for cerebral aneurysm detection, which makes it possible to focus on areas with a high probability of occurrence. This model is expected to enhance the efficiency and accuracy of cerebral aneurysm detection in the field.
4.A Novel Landmark-based Semi-supervised Deep Learning Method for Cerebral Aneurysm Detection Using TOF-MRA
Hyeonsik YANG ; Jieun PARK ; Eunyoung Regina KIM ; Minho LEE ; ZunHyan RIEU ; Donghyeon KIM ; Beomseok SOHN ; Kijeong LEE
Journal of the Korean Neurological Association 2024;42(4):322-330
Background:
Time-of-flight (TOF) magnetic resonance angiography (MRA) is widely used to identify aneurysm in human brain. Various deep learning models have been developed to help TOF-MRA reading in the field. The performance of those TOF-MRA analysis tools, however, faces several limitations in cerebral aneurysm detection. These challenges primarily come from the fact that cerebral aneurysms occupy less than 0.1% of the total TOF-MRA voxel size. This study aims to improve the efficiency of cerebral aneurysm detection by developing a landmark-based semi-supervised deep learning method, a technology that automatically generates landmark boxes in areas with a high probability of cerebral aneurysm occurrence.
Methods:
We used data from a total of 500 aneurysm-positive and 50 aneurysm-negative subjects. The aneurysm detection model was developed using clustering and a dilated residual network.
Results:
When the number of landmarks was ten and their size was 36 mm3, the best performance was achieved in our experiment. Although landmark occupies a small portion of the entire image, up to 98.2% of landmarks were cerebral aneurysms. The sensitivity of the model for cerebral aneurysm detection was 83.0%, with a false positive rate of 3.4%.
Conclusions
This study developed a deep learning model using TOF-MRA image. This model generates the most suitable landmarks for each individual, excluding unnecessary areas for cerebral aneurysm detection, which makes it possible to focus on areas with a high probability of occurrence. This model is expected to enhance the efficiency and accuracy of cerebral aneurysm detection in the field.
6.A Novel Landmark-based Semi-supervised Deep Learning Method for Cerebral Aneurysm Detection Using TOF-MRA
Hyeonsik YANG ; Jieun PARK ; Eunyoung Regina KIM ; Minho LEE ; ZunHyan RIEU ; Donghyeon KIM ; Beomseok SOHN ; Kijeong LEE
Journal of the Korean Neurological Association 2024;42(4):322-330
Background:
Time-of-flight (TOF) magnetic resonance angiography (MRA) is widely used to identify aneurysm in human brain. Various deep learning models have been developed to help TOF-MRA reading in the field. The performance of those TOF-MRA analysis tools, however, faces several limitations in cerebral aneurysm detection. These challenges primarily come from the fact that cerebral aneurysms occupy less than 0.1% of the total TOF-MRA voxel size. This study aims to improve the efficiency of cerebral aneurysm detection by developing a landmark-based semi-supervised deep learning method, a technology that automatically generates landmark boxes in areas with a high probability of cerebral aneurysm occurrence.
Methods:
We used data from a total of 500 aneurysm-positive and 50 aneurysm-negative subjects. The aneurysm detection model was developed using clustering and a dilated residual network.
Results:
When the number of landmarks was ten and their size was 36 mm3, the best performance was achieved in our experiment. Although landmark occupies a small portion of the entire image, up to 98.2% of landmarks were cerebral aneurysms. The sensitivity of the model for cerebral aneurysm detection was 83.0%, with a false positive rate of 3.4%.
Conclusions
This study developed a deep learning model using TOF-MRA image. This model generates the most suitable landmarks for each individual, excluding unnecessary areas for cerebral aneurysm detection, which makes it possible to focus on areas with a high probability of occurrence. This model is expected to enhance the efficiency and accuracy of cerebral aneurysm detection in the field.