1.Meat ducks as carriers of antimicrobial-resistant Escherichia coli harboring transferable R plasmids
Zulqarnain BAQAR ; Nuananong SINWAT ; Rangsiya PRATHAN ; Rungtip CHUANCHUEN
Journal of Veterinary Science 2024;25(5):e62-
Objective:
This study examined the AMR characteristics and transferable R plasmids in Escherichia coli isolated from meat ducks raised in an open-house system.
Methods:
One hundred seventy-seven (n = 177) commensal E. coli were examined for their antimicrobial susceptibilities and horizontal resistance transfer. The plasmids were examined by PCR-based plasmid replicon typing (PBRT) and plasmid multi-locus sequence typing (pMLST).
Results:
The highest resistance rate was found against ampicillin (AMP, 83.0%) and tetracycline (TET, 81.9%), and most isolates exhibited multidrug resistance (MDR) (86.4%). The R plasmids were conjugally transferred when TET (n = 4), AMP (n = 3), and chloramphenicol (n = 3) were used as a selective pressure. The three isolates transferred resistance genes either in AMP or TET. The blaCTX-M1 gene resided on conjugative plasmids. Five replicon types were identified, of which Inc FrepB was most common in the donors (n = 13, 38.4%) and transconjugants (n = 16, 31.2%). Subtyping F plasmids revealed five distinct replicons combinations, including F47:A-:B- (n = 2), F29:A-:B23 (n = 1), F29:A-:B- (n = 1), F18:A-B:- (n = 1), and F4:A-:B- (n = 1). The chloramphenicol resistance was significantly correlated with the other AMR phenotypes (p < 0.05).
Conclusions
and Relevance: The meat ducks harbored MDR E. coli and played an important role in the environmental dissemination of AMR bacteria and its determinants. This confirms AMR as a health issue, highlighting the need for routine AMR monitoring and surveillance of meat ducks.
2.Meat ducks as carriers of antimicrobial-resistant Escherichia coli harboring transferable R plasmids
Zulqarnain BAQAR ; Nuananong SINWAT ; Rangsiya PRATHAN ; Rungtip CHUANCHUEN
Journal of Veterinary Science 2024;25(5):e62-
Objective:
This study examined the AMR characteristics and transferable R plasmids in Escherichia coli isolated from meat ducks raised in an open-house system.
Methods:
One hundred seventy-seven (n = 177) commensal E. coli were examined for their antimicrobial susceptibilities and horizontal resistance transfer. The plasmids were examined by PCR-based plasmid replicon typing (PBRT) and plasmid multi-locus sequence typing (pMLST).
Results:
The highest resistance rate was found against ampicillin (AMP, 83.0%) and tetracycline (TET, 81.9%), and most isolates exhibited multidrug resistance (MDR) (86.4%). The R plasmids were conjugally transferred when TET (n = 4), AMP (n = 3), and chloramphenicol (n = 3) were used as a selective pressure. The three isolates transferred resistance genes either in AMP or TET. The blaCTX-M1 gene resided on conjugative plasmids. Five replicon types were identified, of which Inc FrepB was most common in the donors (n = 13, 38.4%) and transconjugants (n = 16, 31.2%). Subtyping F plasmids revealed five distinct replicons combinations, including F47:A-:B- (n = 2), F29:A-:B23 (n = 1), F29:A-:B- (n = 1), F18:A-B:- (n = 1), and F4:A-:B- (n = 1). The chloramphenicol resistance was significantly correlated with the other AMR phenotypes (p < 0.05).
Conclusions
and Relevance: The meat ducks harbored MDR E. coli and played an important role in the environmental dissemination of AMR bacteria and its determinants. This confirms AMR as a health issue, highlighting the need for routine AMR monitoring and surveillance of meat ducks.
3.Meat ducks as carriers of antimicrobial-resistant Escherichia coli harboring transferable R plasmids
Zulqarnain BAQAR ; Nuananong SINWAT ; Rangsiya PRATHAN ; Rungtip CHUANCHUEN
Journal of Veterinary Science 2024;25(5):e62-
Objective:
This study examined the AMR characteristics and transferable R plasmids in Escherichia coli isolated from meat ducks raised in an open-house system.
Methods:
One hundred seventy-seven (n = 177) commensal E. coli were examined for their antimicrobial susceptibilities and horizontal resistance transfer. The plasmids were examined by PCR-based plasmid replicon typing (PBRT) and plasmid multi-locus sequence typing (pMLST).
Results:
The highest resistance rate was found against ampicillin (AMP, 83.0%) and tetracycline (TET, 81.9%), and most isolates exhibited multidrug resistance (MDR) (86.4%). The R plasmids were conjugally transferred when TET (n = 4), AMP (n = 3), and chloramphenicol (n = 3) were used as a selective pressure. The three isolates transferred resistance genes either in AMP or TET. The blaCTX-M1 gene resided on conjugative plasmids. Five replicon types were identified, of which Inc FrepB was most common in the donors (n = 13, 38.4%) and transconjugants (n = 16, 31.2%). Subtyping F plasmids revealed five distinct replicons combinations, including F47:A-:B- (n = 2), F29:A-:B23 (n = 1), F29:A-:B- (n = 1), F18:A-B:- (n = 1), and F4:A-:B- (n = 1). The chloramphenicol resistance was significantly correlated with the other AMR phenotypes (p < 0.05).
Conclusions
and Relevance: The meat ducks harbored MDR E. coli and played an important role in the environmental dissemination of AMR bacteria and its determinants. This confirms AMR as a health issue, highlighting the need for routine AMR monitoring and surveillance of meat ducks.
4.Meat ducks as carriers of antimicrobial-resistant Escherichia coli harboring transferable R plasmids
Zulqarnain BAQAR ; Nuananong SINWAT ; Rangsiya PRATHAN ; Rungtip CHUANCHUEN
Journal of Veterinary Science 2024;25(5):e62-
Objective:
This study examined the AMR characteristics and transferable R plasmids in Escherichia coli isolated from meat ducks raised in an open-house system.
Methods:
One hundred seventy-seven (n = 177) commensal E. coli were examined for their antimicrobial susceptibilities and horizontal resistance transfer. The plasmids were examined by PCR-based plasmid replicon typing (PBRT) and plasmid multi-locus sequence typing (pMLST).
Results:
The highest resistance rate was found against ampicillin (AMP, 83.0%) and tetracycline (TET, 81.9%), and most isolates exhibited multidrug resistance (MDR) (86.4%). The R plasmids were conjugally transferred when TET (n = 4), AMP (n = 3), and chloramphenicol (n = 3) were used as a selective pressure. The three isolates transferred resistance genes either in AMP or TET. The blaCTX-M1 gene resided on conjugative plasmids. Five replicon types were identified, of which Inc FrepB was most common in the donors (n = 13, 38.4%) and transconjugants (n = 16, 31.2%). Subtyping F plasmids revealed five distinct replicons combinations, including F47:A-:B- (n = 2), F29:A-:B23 (n = 1), F29:A-:B- (n = 1), F18:A-B:- (n = 1), and F4:A-:B- (n = 1). The chloramphenicol resistance was significantly correlated with the other AMR phenotypes (p < 0.05).
Conclusions
and Relevance: The meat ducks harbored MDR E. coli and played an important role in the environmental dissemination of AMR bacteria and its determinants. This confirms AMR as a health issue, highlighting the need for routine AMR monitoring and surveillance of meat ducks.