1.Exploring the active ingredient of Chinese yellow wine which could inhibit the Hcy induced proliferation and migration of vascular smooth muscle cells.
Li-ping MENG ; Chang-zuan ZHOU ; Yan GUO ; Xiao-ya ZHAI ; Cheng-jian JIANG ; Gang LI ; Ju-fang CHI ; Hang-yuan GUO
Chinese Journal of Applied Physiology 2015;31(5):437-442
OBJECTIVETo explore the active ingredients in the Chinese yellow wine could inhibit the proliferation and migration of rat vascular smooth muscle cells induced by homocysteine (Hcy).
METHODSThe primary culture and identification of rat vascular smooth muscle cells (VSMCs) was conducted, and the VSMCs in passage 4-7 were used in the following experiments. The VSMCs were divided into 7 groups: control, Hcy (1 mmol/L), Hcy + oligosaccharide, Hcy + polypeptides, Hcy + polyphenols, Hcy + alcohol, Hcy + Chinese yellow wine and were given the corresponding treatment. The proliferation of VSMCs was determined by MTT. Transwell chambers and would healing were employed to test the migratory ability of VSMCs. Wester blot and gelatin zymography were used to investigate the expressions and activities of metal matrix proteinase 2/9 (MMP-2/9) and tissue inhibitor of metalloproteinase 2 (TIMP-2) in VSMCs of each group.
RESULTSCompared with control group, the proliferation, migration and the expression and activity of MMP-2/9 of VSMCs were significantly increased in the VSMCs of Hcy group (P < 0.01). Compared with Hcy group, the proliferation, migration and the expression and activity of MMP-2/9 of VSMCs were significantly decreases in the VSMCs of polypeptides group, polyphenols group and Chinese yellow wine group. However, the expression of TIMP-2 among each group had no significant difference.
CONCLUSIONPolypeptides and polyphenols in the Chinese yellow wine could inhibit the proliferation and migration of VSMCs induced by Hcy.
Animals ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Homocysteine ; Matrix Metalloproteinase 2 ; metabolism ; Matrix Metalloproteinase 9 ; metabolism ; Muscle, Smooth, Vascular ; cytology ; Myocytes, Smooth Muscle ; cytology ; drug effects ; Peptides ; chemistry ; Polyphenols ; chemistry ; Rats ; Tissue Inhibitor of Metalloproteinase-2 ; metabolism ; Wine
2.Synthesis of 5-aryl-4-cyano-1H-1, 2, 3-triazoles and biological evaluation of their inhibitory action on tyrosine kinase.
Wen-Jie LI ; Su-Fang LIU ; Zuan-Guang CHEN ; Zhi-Yi CHENG
Acta Pharmaceutica Sinica 2009;44(12):1371-1375
5-Aryl-4-cyano-1H-1, 2, 3-triazoles bearing a variety of substituting groups on 5-phenyl were synthesized. Their structures were established by MS, IR and 1H NMR spectra. The crystal structures of compounds 3f and 3m were determined by X-ray diffraction analysis. The active H of the triazole was on 1-N from the crystal structures. The compounds, designed as HER2 tyrosine kinase inhibitors, were screened for bioactivity of growth-inhibition of breast cancer MDA-MB-453 cells. The lowest IC50 value of inhibiting HER2 tyrosine kinase phosphorylation in breast cancer cells is 6.6 micromol x L(-1). The inhibiting-growth of breast cancer cells was enhanced from electron-drawing groups joining 5-phenyl on the triazole.
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Crystallization
;
Crystallography, X-Ray
;
Female
;
Humans
;
Phosphorylation
;
Protein-Tyrosine Kinases
;
antagonists & inhibitors
;
metabolism
;
Receptor, ErbB-2
;
antagonists & inhibitors
;
metabolism
;
Triazoles
;
chemical synthesis
;
chemistry
;
pharmacology
3.Effects of rosuvastatin in homocysteine induced mouse vascular smooth muscle cell dedifferentiation and endoplasmic reticulum stress and its mechanisms.
Chang-Zuan ZHOU ; Sun-Lei PAN ; Hui LIN ; Li-Ping MENG ; Zheng JI ; Ju-Fang CHI ; Hang-Yuan GUO
Chinese Journal of Applied Physiology 2018;34(1):43-48
OBJECTIVE:
To investigate the effect of rosuvastatin on homocysteine (Hcy) induced mousevascular smooth muscle cells(VSMCs) dedifferentiation and endoplasmic reticulum stress(ERS).
METHODS:
VSMCs were co-cultured with Hcy and different concentration of rosuvastatin (0.1, 1.0 and 10 μmol/L). Cytoskeleton remodeling, VSMCs phenotype markers (smooth muscle actin-α, calponin and osteopontin) and ERS marker mRNAs (Herpud1, XBP1s and GRP78) were detected at predicted time. Tunicamycin was used to induce, respectively 4-phenylbutyrate(4-PBA) inhibition, ERS in VSMCs and cellular migration, proliferation and expression of phenotype proteins were analyzed. Mammalian target of rapamycin(mTOR)-P70S6 kinase (P70S6K) signaling agonist phosphatidic acid and inhibitor rapamycin were used in Rsv treated VSMCs. And then mTOR signaling and ERS associated mRNAs were detected.
RESULTS:
Compared with Hcy group, Hcy+ Rsv group (1.0 and 10 μmol/L) showed enhanced α-SMA and calponin expression (<0.01), suppressed ERS mRNA levels (<0.01) and promoted polarity of cytoskeleton. Compared with Hcy group, Hcy+Rsv group and Hcy+4-PBA group showed suppressed proliferation, migration and enhanced contractile protein expression (<0.01); while tunicamycin could reverse the effect of Rsv on Hcy treated cells. Furthermore, alleviated mTOR-P70S6K phosphorylation and ERS (<0.01)were observed in Hcy+Rsv group and Hcy+rapamycin group, compared with Hcy group; while phosphatidic acid inhibited the effect of Rsv on mTOR signaling activation and ERS mRNA levels (<0.01).
CONCLUSIONS
Rosuvastatin could inhibit Hcy induced VSMCs dedifferentiation suppressing ERS, which might be regulated by mTOR-P70S6K signaling.
Actins
;
metabolism
;
Animals
;
Calcium-Binding Proteins
;
metabolism
;
Cell Dedifferentiation
;
drug effects
;
Cells, Cultured
;
Endoplasmic Reticulum Stress
;
drug effects
;
Heat-Shock Proteins
;
metabolism
;
Homocysteine
;
Membrane Proteins
;
metabolism
;
Mice
;
Microfilament Proteins
;
metabolism
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
cytology
;
drug effects
;
Ribosomal Protein S6 Kinases, 70-kDa
;
metabolism
;
Rosuvastatin Calcium
;
pharmacology
;
TOR Serine-Threonine Kinases
;
metabolism
;
X-Box Binding Protein 1
;
metabolism
4.Electroacupuncture Attenuates Ischemic Brain Injury and Cellular Apoptosis via Mitochondrial Translocation of Cofilin.
Bin CHEN ; Wan-Qing LIN ; Zuan-Fang LI ; Xiao-Yong ZHONG ; Jing WANG ; Xiao-Fang YOU ; Hong-Jia ZHAO ; Da-Shi QI
Chinese journal of integrative medicine 2021;27(9):705-712
OBJECTIVE:
To investigate the potential mechanisms of electroacupuncture (EA) to prevent ischemic stroke.
METHODS:
The method of middle cerebral artery occlusion (MCAO) was employed to establish a rat model of ischemic stroke. Seventy-eight Sprague-Dawley rats were divided into the sham group, MCAO + EA control (EC) group, and MCAO + EA (EA) group according to a random number table (n=26 per group). EA was applied to the acupoints of Baihui (DU 20) and Shenting (DU 24) 5 min and 6 h, respectively after the onset of MCAO. Rats in the sham and EC groups received only light isoflurane anesthesia for 30 min after MCAO. The neuroprotective effects of EA were evaluated by rota-rod test, neurological deficit scores and infarct volumes. Additionally, Nissl staining and immunostaining were performed to examine brain damage, rod formation, cellular apoptosis, and neuronal loss induced by ischemia. The activities of caspase-3, and expression levels of cofilin and p-cofilin in mitochondria and cytoplasm after ischemic injury were determined by Western blot.
RESULTS:
Compared with the EC group, EA significantly improved neuromotor function and cognitive ability after ischemic stroke (P<0.05 or P<0.01). Therapeutic use of EA also resulted in a significant decrease of cofilin rod formation and microtubule-associated protein-2 (MAP2) degradation in the cortical penumbra area compared with the EC rats (P<0.01). Furthermore, Western blot analysis showed that EA stimulation significantly inhibited mitochondrial translocation of cofilin and caspase-3 cleavage (P<0.05 or P<0.01). Additionally, brain damage (infarct volume and neuropathy), cellular apoptosis and neuronal loss induced by ischemia were remarkably suppressed by EA in the cortical penumbra of rats (P<0.05 or P<0.01).
CONCLUSION
EA treatment after ischemic stroke may attenuate ischemic brain injury and cellular apoptosis through the regulation of mitochondrial translocation of cofilin, a novel mechanism of EA therapy.