1.Comparison of external morphological characteristics and movement patterns between Schistosoma japonicum and S. sinensis cercariae
Jing SONG ; Zongya ZHANG ; Meifen SHEN ; Jihua ZHOU ; Chunying LI ; Zaogai YANG ; Yi DONG ; Chunhong DU
Chinese Journal of Schistosomiasis Control 2024;36(4):384-387
Objective To compare the external morphological characteristics and movement patterns between Schistosoma japonicum and S. sinensis cercariae. Methods S. japonicum and S. sinensis cercariae were heat-fixed, and well-extended cercariae, of 50 each species, were randomly selected for measurement of body length, body width, tail stem length, and tail fork length. The external morphological characteristics of S. japonicum and S. sinensis cercariae were compared. In addition, S. japonicum-infected Oncomelania snails and S. sinensis-infected Tricula snails were observed under a microscope and the movement patterns of S. japonicum and S. sinensis cercariae were compared. Results The mean body length, body width, tail stem length, and tail fork length were (0.16 ± 0.01), (0.05 ± 0.01), (0.14 ± 0.01) mm and (0.06 ± 0.01) mm for S. japonicum cercariae, and (0.13 ± 0.01), (0.05 ± 0.01), (0.13 ± 0.01) mm and (0.06 ± 0.01) mm for S. sinensis cercariae, respectively, and there were significant differences in terms of cercaria body length (t = 14.583, P < 0.05) and tail stem length (t = 3.861, P < 0.05), while no significant differences were seen in terms of body width (t = 0.896, P > 0.05) or tail fork length (t = −0.454, P > 0.05). Microscopy revealed that the tails of both S. japonicum and S. sinensis cercariae swung from side to side and there was no significant difference in their movement pattern. Conclusion S. sinensis and S. japonicum cercariae share highly similar external external morphological characteristics and movement patterns.
2.Progress of interruption of schistosomiasis transmission and prospects in Yunnan Province
Yun ZHANG ; Lifang WANG ; Xiguang FENG ; Mingshou WU ; Meifen SHEN ; Hua JIANG ; Jing SONG ; Jiayu SUN ; Chunqiong CHEN ; Jiaqi YAN ; Zongya ZHANG ; Jihua ZHOU ; Yi DONG ; Chunhong DU
Chinese Journal of Schistosomiasis Control 2024;36(4):422-427
Schistosomiasis was once hyper-endemic in Yunnan Province. Following concerted efforts for over 70 years, remarkable achievements have been made for schistosomiasis control in the province. In 2004, the Mid- and Long-term Plan for Schistosomiasis Prevention and Control in Yunnan Province was initiated in Yunnan Province, and the target for transmission control of schistosomiasis was achieved in the province in 2009. Following the subsequent implementation of the Outline for Key Projects in Integrated Schistosomiasis Control Program (2009—2015) and the 13th Five - year Plan for Schistosomiasis Control in Yunnan Province, no acute schistosomiasis had been identified in Yunnan Province for successive 12 years, and no local Schistosoma japonicum infections had been detected in humans, animals or Oncomelania hupensis snails for successive 6 years in the province by the end of 2020. The transmission of schistosomiasis was interrupted in Yunnan Province in 2020. This review summarizes the history of schistosomiasis, changes in schistosomiasis prevalence and progress of schistosomiasis control in Yunnan Province, and proposes the future priorities for schistosomiasis control in the province.
3.Prediction of potential geographic distribution of Oncomelania hupensis in Yunnan Province using random forest and maximum entropy models
Zongya ZHANG ; Chunhong DU ; Yun ZHANG ; Hongqiong WANG ; Jing SONG ; Jihua ZHOU ; Lifang WANG ; Jiayu SUN ; Meifen SHEN ; Chunqiong CHEN ; Hua JIANG ; Jiaqi YAN ; Xiguang FENG ; Wenya WANG ; Peijun QIAN ; Jingbo XUE ; Shizhu LI ; Yi DONG
Chinese Journal of Schistosomiasis Control 2024;36(6):562-571
Objective To predict the potential geographic distribution of Oncomelania hupensis in Yunnan Province using random forest (RF) and maximum entropy (MaxEnt) models, so as to provide insights into O. hupensis surveillance and control in Yunnan Province. Methods The O. hupensis snail survey data in Yunnan Province from 2015 to 2016 were collected and converted into O. hupensis snail distribution site data. Data of 22 environmental variables in Yunnan Province were collected, including twelve climate variables (annual potential evapotranspiration, annual mean ground surface temperature, annual precipitation, annual mean air pressure, annual mean relative humidity, annual sunshine duration, annual mean air temperature, annual mean wind speed, ≥ 0 ℃ annual accumulated temperature, ≥ 10 ℃ annual accumulated temperature, aridity and index of moisture), eight geographical variables (normalized difference vegetation index, landform type, land use type, altitude, soil type, soil textureclay content, soil texture-sand content and soil texture-silt content) and two population and economic variables (gross domestic product and population). Variables were screened with Pearson correlation test and variance inflation factor (VIF) test. The RF and MaxEnt models and the ensemble model were created using the biomod2 package of the software R 4.2.1, and the potential distribution of O. hupensis snails after 2016 was predicted in Yunnan Province. The predictive effects of models were evaluated through cross-validation and independent tests, and the area under the receiver operating characteristic curve (AUC), true skill statistics (TSS) and Kappa statistics were used for model evaluation. In addition, the importance of environmental variables was analyzed, the contribution of environmental variables output by the models with AUC values of > 0.950 and TSS values of > 0.850 were selected for normalization processing, and the importance percentage of environmental variables was obtained to analyze the importance of environmental variables. Results Data of 148 O. hupensis snail distribution sites and 15 environmental variables were included in training sets of RF and MaxEnt models, and both RF and MaxEnt models had high predictive performance, with both mean AUC values of > 0.900 and all mean TSS values and Kappa values of > 0.800, and significant differences in the AUC (t = 19.862, P < 0.05), TSS (t = 10.140, P < 0.05) and Kappa values (t = 10.237, P < 0.05) between two models. The AUC, TSS and Kappa values of the ensemble model were 0.996, 0.954 and 0.920, respectively. Independent data verification showed that the AUC, TSS and Kappa values of the RF model and the ensemble model were all 1, which still showed high performance in unknown data modeling, and the MaxEnt model showed poor performance, with TSS and Kappa values of 0 for 24%(24/100) of the modeling results. The modeling results of 79 RF models, 38 MaxEnt models and their ensemble models with AUC values of > 0.950 and TSS values of > 0.850 were included in the evaluation of importance of environmental variables. The importance of annual sunshine duration (SSD) was 32.989%, 37.847% and 46.315% in the RF model, the MaxEnt model and their ensemble model, while the importance of annual mean relative humidity (RHU) was 30.947%, 15.921% and 28.121%, respectively. Important environment variables were concentrated in modeling results of the RF model, dispersed in modeling results of the MaxEnt model, and most concentrated in modeling results of the ensemble model. The potential distribution of O. hupensis snails after 2016 was predicted to be relatively concentrated in Yunnan Province by the RF model and relatively large by the MaxEnt model, and the distribution of O. hupensis snails predicted by the ensemble model was mostly the joint distribution of O. hupensis snails predicted by RF and MaxEnt models. Conclusions Both RF and MaxEnt models are effective to predict the potential distribution of O. hupensis snails in Yunnan Province, which facilitates targeted O. hupensis snail control.