1.Analysis of The Characteristics of Brain Functional Activity in Gross Motor Tasks in Children With Autism Based on Functional Near-infrared Spectroscopy Technology
Wen-Hao ZONG ; Qi LIANG ; Shi-Yu YANG ; Feng-Jiao WANG ; Meng-Zhao WEI ; Hong LEI ; Gui-Jun DONG ; Ke-Feng LI
Progress in Biochemistry and Biophysics 2025;52(8):2146-2162
ObjectiveBased on functional near-infrared spectroscopy (fNIRS), we investigated the brain activity characteristics of gross motor tasks in children with autism spectrum disorder (ASD) and motor dysfunctions (MDs) to provide a theoretical basis for further understanding the mechanism of MDs in children with ASD and designing targeted intervention programs from a central perspective. MethodsAccording to the inclusion and exclusion criteria, 48 children with ASD accompanied by MDs were recruited into the ASD group and 40 children with typically developing (TD) into the TD group. The fNIRS device was used to collect the information of blood oxygen changes in the cortical motor-related brain regions during single-handed bag throwing and tiptoe walking, and the differences in brain activation and functional connectivity between the two groups of children were analyzed from the perspective of brain activation and functional connectivity. ResultsCompared to the TD group, in the object manipulative motor task (one-handed bag throwing), the ASD group showed significantly reduced activation in both left sensorimotor cortex (SMC) and right secondary visual cortex (V2) (P<0.05), whereas the right pre-motor and supplementary motor cortex (PMC&SMA) had significantly higher activation (P<0.01) and showed bilateral brain region activity; in terms of brain functional integration, there was a significant decrease in the strength of brain functional connectivity (P<0.05) and was mainly associated with dorsolateral prefrontal cortex (DLPFC) and V2. In the body stability motor task (tiptoe walking), the ASD group had significantly higher activation in motor-related brain regions such as the DLPFC, SMC, and PMC&SMA (P<0.05) and showed bilateral brain region activity; in terms of brain functional integration, the ASD group had lower strength of brain functional connectivity (P<0.05) and was mainly associated with PMC&SMA and V2. ConclusionChildren with ASD exhibit abnormal brain functional activity characteristics specific to different gross motor tasks in object manipulative and body stability, reflecting insufficient or excessive compensatory activation of local brain regions and impaired cross-regions integration, which may be a potential reason for the poorer gross motor performance of children with ASD, and meanwhile provides data support for further unraveling the mechanisms underlying the occurrence of MDs in the context of ASD and designing targeted intervention programs from a central perspective.
2.Effect of Duhuo Jisheng Decoction on knee osteoarthritis model rabbits through regulation of cell pyroptosis mediated by PI3K/Akt/mTOR signaling pathway.
Lin-Qin HE ; Peng-Fei LI ; Xiao-Dong LI ; Qi-Peng CHEN ; Zong-Han TANG ; Yu-Xin SONG ; Han-Bing SONG
China Journal of Chinese Materia Medica 2025;50(1):187-197
This study aimed to investigate the underlying mechanisms of Duhuo Jisheng Decoction(DJD) in the prevention and treatment of knee osteoarthritis(KOA). Forty SPF New Zealand rabbits were randomly divided using SPSS 26.0 software into five groups: blank group, model group, low-dose DJD group, high-dose DJD group, and high-dose DJD+phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathway activator group(high-dose DJD+740Y-P group), with eight rabbits in each group. Except for the blank group, the KOA model was established in the other groups using papain injection into the knee joint cavity combined with forced flexion of the knee joint. The day after modeling, the blank group and model group were given normal saline at 10 mL·kg~(-1) by gavage, the low-dose DJD group received DJD at 8.8 g·kg~(-1) by gavage, the high-dose DJD group received DJD at 35.2 g·kg~(-1) by gavage, and the high-dose DJD+740Y-P group received DJD at 35.2 g·kg~(-1) by gavage along with 740Y-P at 0.15 μmoL·kg~(-1) injected via the auricular vein. All groups received treatment continuously for four weeks. After modeling and intervention, behavioral observations were performed for all groups, and after the intervention, imaging assessments of the knee joints were conducted. Cartilage from the knee joints was collected, and gross morphological changes were observed. Pathological changes in cartilage tissue were examined using hematoxylin-eosin(HE) staining. The results of these observations were quantitatively evaluated using the Lequesne MG score, Kellgren-Lawrence(K-L) grading, Pelletier score, and Mankin score. ELISA was used to measure the levels of interleukin-1β(IL-1β), interleukin-18(IL-18), and matrix metalloproteinase 13(MMP13) in cartilage tissue. Real-time RT-PCR was used to detect the mRNA expression levels of PI3K, Akt, mTOR, Nod-like receptor protein 3(NLRP3), cysteine protease 1(caspase-1), and gasdermin D(GSDMD) in cartilage tissue. Western blot was employed to measure the protein expression levels of PI3K, Akt, mTOR, NLRP3, caspase-1, and GSDMD. The results showed that compared with the blank group, the model group exhibited significant knee joint degeneration, increased Lequesne MG score, K-L grading, Pelletier score, and Mankin score, elevated levels of IL-1β, IL-18, and MMP13 in cartilage tissue, activation of PI3K, Akt, and mTOR phosphorylation along with increased mRNA expression levels, and elevated protein and mRNA expression levels of NLRP3, caspase-1, and GSDMD. Compared with the model group, these indicators were reversed in both the low-dose and high-dose DJD groups, with the high-dose group showing greater decline degree than the low-dose DJD group. However, compared with the high-dose DJD group, the improvements in knee joint degeneration were less pronounced in the high-dose DJD+740Y-P group, with increased Lequesne MG score, K-L grading, Pelletier score, Mankin score, elevated levels of IL-1β, IL-18, and MMP13, activation of PI3K, Akt, and mTOR phosphorylation along with increased mRNA expression, and increased protein and mRNA expression levels of NLRP3, caspase-1, and GSDMD. In conclusion, DJD is effective and safe in the treatment of KOA, and its mechanism may be related to the inhibition of PI3K/Akt/mTOR signaling pathway-mediated pyroptosis in cartilage tissue, thereby improving knee joint bone structure, reducing the inflammatory response, and preventing cartilage matrix degradation.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rabbits
;
TOR Serine-Threonine Kinases/genetics*
;
Osteoarthritis, Knee/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Signal Transduction/drug effects*
;
Male
;
Disease Models, Animal
;
Pyroptosis/drug effects*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Humans
;
Female
3.Biosynthesis of ganoderic acid and its derivatives.
Hong-Yan SONG ; Wan YANG ; Li-Wei LIU ; Xia-Ying CHENG ; Dong-Feng YANG ; Zong-Qi YANG
China Journal of Chinese Materia Medica 2025;50(5):1155-1163
Ganoderic acid is a class of lanostane-type triterpenoids found in Ganoderma species, and is one of the most important pharmacologically active components in G. lucidum, exhibiting antioxidant, anti-neuropsychiatric, anti-tumor, and immune-enhancing properties. The content of ganoderic acid in G. lucidum is very low, and the traditional extraction process is complex, yielding minimal amounts at high cost. The biosynthetic pathway of G. lucidum triterpenoids(GLTs), including the synthesis of different structural forms of ganoderic acid from lanosterol, as well as the molecular regulatory mechanisms involving key regulatory enzyme genes and their functions, are not yet fully understood. With the continuous development of synthetic biology technologies, there has been a deeper understanding of the biosynthesis and metabolic regulation pathways of ganoderic acid and its derivatives at the molecular level. Research has explored the key regulatory enzyme genes related to ganoderic acid biosynthesis and their functions. Moreover, through the optimization of synthetic biology and culture conditions, large-scale production and preparation of GLTs at the cellular level have been achieved. This paper reviews and analyzes the latest research progress on the biosynthesis pathways and metabolic regulation of GLTs, focusing on the configuration of ganoderic acid and its derivatives, the biosynthetic pathways, key enzyme genes, transcription factors related to ganoderic acid biosynthesis, signal transduction mechanisms, and factors affecting triterpenoid biotransformation. This review is expected to provide a theoretical basis and technical reference for improving the efficient production of triterpenoid pharmacological components and the exploitation and utilization of G. lucidum resources.
Triterpenes/chemistry*
;
Reishi/chemistry*
;
Biosynthetic Pathways
;
Lanosterol
4.Clinical Characteristics and Risk Factors of Coronary Artery Disease in Patients with Hypertension and Persistent Atrial Fibrillation.
Jia-Qi BAI ; Yi-Ning LIU ; Rui-Zhe LI ; Zong-Bin LI
Chinese Medical Sciences Journal 2025;40(3):171-179
BACKGROUND AND OBJECTIVE: Hypertension (HT) and atrial fibrillation (AF) are highly prevalent cardiovascular conditions that frequently coexist. Coronary artery disease (CAD) is a major global cause of mortality. The co-occurrence of HT, AF, and CAD presents significant management challenges. This study aims to explore the clinical characteristics and risk factors associated with CAD in patients with HT and persistent AF (HT-AF). METHODS: In this retrospective cross-sectional study, data were collected from 384 hospitalized HT-AF patients at the People's Liberation Army General Hospital between January 2010 and December 2019. CAD diagnosis was confirmed by coronary angiography or computed tomography angiography. Clinical characteristics and comorbidities were compared between patients with and without CAD. Multivariate logistic regression analyses were performed to identify independent risk factors associated with CAD development. RESULTS: The prevalence of CAD among HT-AF patients was 66.41% (255/384). Cardiovascular complications, particularly heart failure (44.7% vs 25.6%, P < 0.05), were significantly more prevalent in the CAD group than in the non-CAD group. Only age was identified as an independent risk factor for CAD (adjusted OR: 1.047; 95% CI: 1.022-1.073; P = 0.000). Of all HT-AF patients, 54.7% had a CHA2DS2-VASc score of ≥4, indicating high stroke risk. There was a slightly higher anticoagulant usage rate in the CAD group than those without CAD (8.6% vs 4.7%, P = 0.157), and the overall anticoagulant usage remained low. CONCLUSION: There is a high prevalence of CAD among hospitalized HT-AF patients, among whom age is the sole independent risk factor for CAD. Despite a high stroke risk, the utilization of oral anticoagulants is alarmingly low.
Humans
;
Atrial Fibrillation/epidemiology*
;
Coronary Artery Disease/etiology*
;
Hypertension/epidemiology*
;
Male
;
Female
;
Risk Factors
;
Middle Aged
;
Retrospective Studies
;
Cross-Sectional Studies
;
Aged
;
Prevalence
5.Body fat distribution and semen quality in 4304 Chinese sperm donors.
Si-Han LIANG ; Qi-Ling WANG ; Dan LI ; Gui-Fang YE ; Ying-Xin LI ; Wei ZHOU ; Rui-Jun XU ; Xin-Yi DENG ; Lu LUO ; Si-Rong WANG ; Xin-Zong ZHANG ; Yue-Wei LIU
Asian Journal of Andrology 2025;27(4):524-530
Extensive studies have identified potential adverse effects on semen quality of obesity, based on body mass index, but the association between body fat distribution, a more relevant indicator for obesity, and semen quality remains less clear. We conducted a longitudinal study of 4304 sperm donors from the Guangdong Provincial Human Sperm Bank (Guangzhou, China) during 2017-2021. A body composition analyzer was used to measure total and local body fat percentage for each participant. Generalized estimating equations were employed to assess the association between body fat percentage and sperm count, motility, and morphology. We estimated that each 10% increase in total body fat percentage (estimated change [95% confidence interval, 95% CI]) was significantly associated with a 0.18 × 10 6 (0.09 × 10 6 -0.27 × 10 6 ) ml and 12.21 × 10 6 (4.52 × 10 6 -19.91 × 10 6 ) reduction in semen volume and total sperm count, respectively. Categorical analyses and exposure-response curves showed that the association of body fat distribution with semen volume and total sperm count was stronger at higher body fat percentages. In addition, the association still held among normal weight and overweight participants. We observed similar associations for upper limb, trunk, and lower limb body fact distributions. In conclusion, we found that a higher body fat distribution was significantly associated with lower semen quality (especially semen volume) even in men with a normal weight. These findings provide useful clues in exploring body fat as a risk factor for semen quality decline and add to evidence for improving semen quality for those who are expected to conceive.
Humans
;
Male
;
Adult
;
Semen Analysis
;
China
;
Body Fat Distribution
;
Longitudinal Studies
;
Sperm Count
;
Sperm Motility
;
Body Mass Index
;
Tissue Donors
;
Obesity/complications*
;
Spermatozoa
;
Young Adult
;
Middle Aged
;
East Asian People
6.Dendritic cells immunotargeted therapy for atherosclerosis.
Zhaohui LI ; Yanyan YANG ; Jinbao ZONG ; Bei ZHANG ; Xiaolu LI ; Hongzhao QI ; Tao YU ; Yongxin LI
Acta Pharmaceutica Sinica B 2025;15(2):792-808
Atherosclerosis, a chronic inflammatory disease, is markedly influenced by both immune and inflammatory reactions throughout its progression. Dendritic cells, as pivotal antigen-presenting entities, play a crucial role in the initiation of immune responses and the preservation of immunological homeostasis. Accumulating data indicates that dendritic cells are present in healthy arteries and accumulate significantly in atherosclerotic plaques. Novel immunotherapeutic approaches and vaccination protocols have yielded substantial clinical advancements in managing chronic inflammatory diseases, with dendritic cell-centric modalities emerging for atherosclerotic management. In this review, we delineate the essential functions and underlying mechanisms of dendritic cells and their subsets in the modulation of atherosclerotic inflammation and immune responses. We underscore the immense promise of dendritic cell-based immunotherapeutic strategies, including vaccines and innovative combinations with nanotechnological drug delivery platforms for atherosclerosis treatment. We also discuss the challenges associated with dendritic cell immunotherapy and provide perspectives on the future direction of this field.
7.Effects of Hot Night Exposure on Human Semen Quality: A Multicenter Population-Based Study.
Ting Ting DAI ; Ting XU ; Qi Ling WANG ; Hao Bo NI ; Chun Ying SONG ; Yu Shan LI ; Fu Ping LI ; Tian Qing MENG ; Hui Qiang SHENG ; Ling Xi WANG ; Xiao Yan CAI ; Li Na XIAO ; Xiao Lin YU ; Qing Hui ZENG ; Pi GUO ; Xin Zong ZHANG
Biomedical and Environmental Sciences 2025;38(2):178-193
OBJECTIVE:
To explore and quantify the association of hot night exposure during the sperm development period (0-90 lag days) with semen quality.
METHODS:
A total of 6,640 male sperm donors from 6 human sperm banks in China during 2014-2020 were recruited in this multicenter study. Two indices (i.e., hot night excess [HNE] and hot night duration [HND]) were used to estimate the heat intensity and duration during nighttime. Linear mixed models were used to examine the association between hot nights and semen quality parameters.
RESULTS:
The exposure-response relationship revealed that HNE and HND during 0-90 days before semen collection had a significantly inverse association with sperm motility. Specifically, a 1 °C increase in HNE was associated with decreased sperm progressive motility of 0.0090 (95% confidence interval [ CI]: -0.0147, -0.0033) and decreased total motility of 0.0094 (95% CI: -0.0160, -0.0029). HND was significantly associated with reduced sperm progressive motility and total motility of 0.0021 (95% CI: -0.0040, -0.0003) and 0.0023 (95% CI: -0.0043, -0.0002), respectively. Consistent results were observed at different temperature thresholds on hot nights.
CONCLUSION
Our findings highlight the need to mitigate nocturnal heat exposure during spermatogenesis to maintain optimal semen quality.
Humans
;
Male
;
Semen Analysis
;
Adult
;
Sperm Motility
;
Hot Temperature/adverse effects*
;
China
;
Middle Aged
;
Spermatozoa/physiology*
;
Young Adult
8.Protective Effect of Endogenous ω-3 Polyunsaturated Fatty Acid Against Cisplatin-Induced Myelosuppression
Qi-Hua XU ; Zong-Meng ZHANG ; Chao-Feng XING ; Han-Si CHEN ; Ke-Xin ZHENG ; Yun-Ping MU ; Zi-Jian ZHAO ; Fang-Hong LI
Journal of Experimental Hematology 2024;32(5):1601-1607
Objective:To investigate the protective effect of endogenous ω-3 polyunsaturated fatty acid(PUFA)against cisplatin-induced myelosuppression and the mechanism of reducing apoptosis in bone marrow nucleated cells using mfat-1 transgenic mice.Methods:The experimental animals were divided into 4 groups:wild-type mice normal control group,mfat-1 transgenic mice normal control group,wild-type mice model group and mfat-1 transgenic mice model group.The mice in the model group were injected intraperitoneally with 7.5 mg/kg cisplatin on day 0 and day 7 to construct a myelosuppression model,while the mice in the normal control group were injected intraperitoneally with an equal amount of saline,and their status was observed and their body weight was measured daily.Peripheral blood was taken after 14 day for routine blood analysis,and the content and proportion of PUFA in peripheral blood were detected using gas chromatography.Bone marrow nucleated cells in the femur of mice were counted.The histopathological changes in bone marrow were observed by histopathological staining.The apoptosis of nucleated cells and the expression level changes of apoptosis-related genes in the bone marrow of mice were detected by flow cytometry and fluorescence quantitative PCR.Results:Compared with wild-type mice,mfat-1 transgenic mice showed significantly increased levels of ω-3 PUFA in peripheral blood and greater tolerance to cisplatin.Peripheral blood analysis showed that endogenous ω-3 PUFA promoted the recovery of leukocytes,erythrocytes,platelets and haemoglobin in peripheral blood of myelosuppressed mice.The results of HE staining showed that endogenous ω-3 PUFA significantly improved the structural damage of bone marrow tissue induced by cisplatin.Flow cytometry and PCR showed that,compared with wild-type mice model group,the apoptosis rate of bone marrow nucleated cells in mfat-1 transgenic mice was significantly reduced(P<0.001),and the expression of anti-apoptotic genes Bcl-2 mRNA was significantly increased(P<0.01),while the expressions of pro-apoptotic genes Bax and Bak mRNA were significantly reduced(P<0.001,P<0.05).Conclusion:Endogenous ω-3 PUFA can reduce cisplatin-induced apoptosis in bone marrow nucleated cells,increase the number of peripheral blood cells and exert a protective effect against cisplatin-induced myelosuppression by regulating the expression of apoptosis-related genes.
9.Role of macrophages in pulmonary blood-air barrier impairment induced by PM2.5 exposure
Mengfei YAO ; Guozhen WANG ; Xiaonan HOU ; Duo TANG ; Zijia LIU ; Chao SHENG ; Yuchen ZHENG ; Qi ZONG ; Wenke LI ; Zhixiang ZHOU
Journal of Army Medical University 2024;46(8):849-858
Objective To investigate the role of macrophages in the process of fine particulate matter (PM2.5)exposure induced damage to pulmonary blood-air barrier.Methods Eighteen male BALB/C mice (aged of 10 weeks,weighing 24~27 g)were randomly divided into control group and low-and high-dose PM2.5 exposure groups (receiving 1 .8 and 16.2 mg/kg,respectively),with 6 mice in each group.The control group received tracheal instillations of normal saline on days 1,4,and 7,whereas the exposure groups were administered corresponding dose of PM2.5 exposure at the same time points.In 24 h after last exposure,pathological changes in the lung tissues were observed,and the contents of total protein (TP ),lactate dehydrogenase (LDH ),and alkaline phosphatase (AKP ) in bronchoalveolar lavage fluid (BALF ),and F4/80 protein level in lung tissue were measured to evaluate the blood-air barrier damage and macrophage infiltration within the lung tissues.Additionally,an in vitro model of the blood-air barrier was established using A549 alveolar epithelial cells and EA.hy926 vascular endothelial cells.In combination with a THP-1 macrophage model,the supernatant PM2.5 supernatant,macrophage supernatant,and PM2.5-macrophage supernatant were incubated with the barrier model for 24 h,respectively.Transmembrane electrical resistance (TEER),sodium fluorescein permeability of the barrier model,and LDH release from the barrier cells were measured to ascertain the extent of macrophage-mediated enhancement in barrier damage induced by PM2.5 exposure.Furthermore,the expression of inflammatory cytokines,such as TNF-α,IL-1β,IL-6,and IL-8 in the macrophages after PM2.5 exposure was analyzed with quantitative real-time PCR (qPCR)and enzyme-linked immunosorbent assay (ELISA).Results PM2.5 exposure induced lung tissue damage in mice in a dose-dependent manner,significantly elevated the contents of TP,LDH and AKP in the BALF and caused marked infiltration of macrophages into the lung tissue,especially the high-dose exposure when compared with the mice from the control group (P<0.01 ).In vitro barrier model exposure experiments showed that in comparison with the treatment of 150 and 300 μg/mL PM2.5 and macrophage supernatant,the same doses of PM2.5-macrophage supernatant resulted in notably decreased TEER and significantly enhanced permeability in the barrier model (P<0.01 ),and markedly increased LDH release from epithelial and endothelial barrier cells (P<0.01 ).Additionally,the exposure of 150 and 300μg/mL PM2.5 led to a significant up-regulation of TNF-α,IL-1β,IL-6,and IL-8 in the macrophages (P<0.01 ).Conclusion Macrophages deteriorate PM2.5-induced functional impairment of the pulmonary blood-air barrier.
10. Effects of metabolites of eicosapentaenoic acid on promoting transdifferentiation of pancreatic OL cells into pancreatic β cells
Chao-Feng XING ; Min-Yi TANG ; Qi-Hua XU ; Shuai WANG ; Zong-Meng ZHANG ; Zi-Jian ZHAO ; Yun-Pin MU ; Fang-Hong LI
Chinese Pharmacological Bulletin 2024;40(1):31-38
Aim To investigate the role of metabolites of eicosapentaenoic acid (EPA) in promoting the transdifferentiation of pancreatic α cells to β cells. Methods Male C57BL/6J mice were injected intraperitoneally with 60 mg/kg streptozocin (STZ) for five consecutive days to establish a type 1 diabetes (T1DM) mouse model. After two weeks, they were randomly divided into model groups and 97% EPA diet intervention group, 75% fish oil (50% EPA +25% DHA) diet intervention group, and random blood glucose was detected every week; after the model expired, the regeneration of pancreatic β cells in mouse pancreas was observed by immunofluorescence staining. The islets of mice (obtained by crossing GCG

Result Analysis
Print
Save
E-mail