3.Effect of insulin on the differential expression of VLDL receptor isoforms of SGC7901 cell and its biological implication.
Zhejun, CAI ; Fei, LI ; Chuanmei, PENG ; He, LI ; Yiqiang, ZONG ; Zhiguo, LIU ; Shen, QU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2010;30(5):551-5
This study examined the effect of insulin on the expression of very low density lipoprotein receptor (VLDLR) subtypes of SGC7901 cells and discussed its biological implication. In vitro, moderately or poorly-differentiated human gastric adenocarcinoma cell line SGC7901 was incubated with insulin for different lengths of time, and then the expression of protein and RNA level in VLDLR subtypes were detected by Western blotting and real-time PCR, respectively. The results showed that, at certain time interval, insulin could down-regulate expression of type I VLDLR and up-regulate the expression of type II VLDLR in SGC7901 cells, at both protein and RNA level. We are led to conclude that insulin serves as a regulator in maintaining the balance between glucose and lipid metabolism in vivo, possibly through its effect on the differential expression of VLDLR subtypes.
5.Embryo-fetus development toxicity of a novel PPAR-δ agonist in rat.
Hua-Yun GONG ; Yong ZHU ; Zong-He LI ; Xiao-Yan FAN ; Rong FAN ; Fang-Tong WANG
Acta Pharmaceutica Sinica 2014;49(11):1536-1542
The study aims to investigate the embryo-fetus development toxicity of the novel PPAR-δ agonist HS060098 on SD rats. The pregnant rats that were randomly divided into the solvent control group (1% hydroxypropyl methyl cellulose water solution) and HS060098 suspension groups (10, 30 and 100 mg x kg(-1) xd(-1)) were orally administered with HS060098 suspension or vehicle during the gestation of 6 -15 days (GD6-15). At termination (GD20), female rats were sacrificed. The pregnant females were evaluated by corpora lutea count, implantation sites, existence and death of embryos. Fetal sex, weight, externals, variations and malformations of viscus and skeleton were observed. The results show that there were no significant abnormality in maternal general conditions and fetal appearance as well as viscera, but in the 100 mg x kg(-1) x d(-1) group, the maternal weight gain decreased greatly (P < 0.01) and the skeletal ossification delayed remarkably (P < 0.01); in the 30 mg x kg(-1) xd(-1) group, the fatal and litter number of incompletely ossified sternebrae II was higher than those of the control group (P < 0.05); the skeletal malformations occurred in all dose groups, which indicate that the novel PPAR-δ agonist HS060098 had maternal toxicity and adversely effected fetal skeletal development under the experimental conditions.
Animals
;
Bone and Bones
;
drug effects
;
Embryonic Development
;
drug effects
;
Female
;
Fetal Weight
;
PPAR delta
;
agonists
;
Pregnancy
;
Rats
;
Toxicity Tests
7.Cell penetrating peptide TAT and brain tumor targeting peptide T7 dual modified liposome preparation and in vitro targeting evaluation.
Duan-feng YUAN ; Tai-li ZONG ; Hui-le GAO ; Qin HE
Acta Pharmaceutica Sinica 2015;50(1):104-110
The purpose of this study is to prepare T7 and TAT dual modified liposomes (T7-TAT-LIP) to penetrate through blood brain barrier and target to brain tumor cells. The liposomes were prepared with CFPE, T7 modified PEG-DSPE, TAT modified PEG-DSPE, soybean phospholipid, PEG-DSPE and cholesterol. The CFPE was used to track the cellular uptake efficiency. The density of T7 and TAT and the length of PEG were optimized, and then the liposomes were characterized by particle size, zeta potential, morphology and stability. Afterwards, the cellular uptake by bEnd.3 and C6 cells were evaluated. The results showed that the optimized parameters were 6% of T7, 0.5% of TAT, the molecular weight of PEG for T7 was 2000 and the molecular weight of PEG for TAT was 1000. After optimization, the particle size of T7-TAT-LIP was 118 nm, the zeta potential was -6.32 mV and the particles were spherical. The turbidity and particle size of liposomes were not obviously changed after 24 h incubation in PBS at 37 °C. The particle size and polydispersity index were also stable during 1 month incubation at 4-8 °C. The cellular uptake by both bEnd.3 and C6 cells of T7-TAT-LIP was higher than that of T7 or TAT modified liposomes, suggesting dual modified liposomes possessed better blood brain barrier targeting ability and brain tumor targeting ability than the single ligand modified liposomes.
Biological Transport
;
Blood-Brain Barrier
;
Brain Neoplasms
;
drug therapy
;
Cell-Penetrating Peptides
;
pharmacology
;
Cholesterol
;
Liposomes
;
Particle Size
;
Phosphatidylethanolamines
;
Polyethylene Glycols
8.LIPASE-CATALYZED ENANTIOSELECTIVE AMMONOLYSIS OF (?)-?- METHYLBENZYL ACETATE IN MICROAQUEOUS PHASE
Hui-Qing LI ; Min-Hua ZONG ; Huan HE ; Wen-Feng LIANG ;
Microbiology 1992;0(06):-
Novozym 435 was selected from four lipases and two proteinase because of its high catalytic activity and enantiosectivity.For the ammonolysis of (?)-?-methylbenzyl acetate,The effect of ammonia sources,the concentration of enzyme and substrates on the reaction were further explored .under the optimum conditions of this study,after 6h reaction,with the enantiomeric excess of the remaining (-)-?-methylbenzyl acetate was found to be higher than 99%.
9.EFFECT OF MICROENVIRENMENT ON LIPASE-CATALYZED ENANTIOSEL-ECTIVE AMMONOLYSIS OF (?) -?-METHYLBENZYL ACETATE
Hui-Qing LI ; Min-Hua ZONG ; Wen-Feng LIANG ; Huan HE ;
Microbiology 1992;0(01):-
The effects of reaction media, water activity, temperature and pH on Novozym 435-catalyzed enantiose-lective ammonolysis of (?) -?-methylbenzyl acetate have been systematically explored. Novozym 435 showed high catalytic activity and enantioselectivity in hexane; the optimum temperature and the initial water activity were 25℃ and 0.33 respectively; The suitable reaction pH was in the range of 6.0 - 7.0.
10.Polygonatum sibiricum polysaccharide attenuates bone marrow-derived macrophages to differentiate into osteoclasts and protects against lipopolysaccharide-induced osteolysis in vivo
Jichen HE ; Shaohui ZONG ; Gaofeng ZENG ; Li DU ; Xiaoming PENG ; Xiongzhi SHI ; Yunle WU
Chinese Journal of Tissue Engineering Research 2017;21(20):3117-3122
BACKGROUND: Bone marrow-derived mononuclear cells (BM-MNCs) hold the potential of differentiating into osteoclasts. Polygonatum sibiricum polysaccharide (PSP) may inhibit the differentiation of BM-MNCs into osteoclasts and it is expected to become a new drug for the treatment of osteoporosis. OBJECTIVE: To investigate the effect of PSP on the differentiation of mouse BM-MNCs into osteoclasts induced by receptor activator of nuclear factor kappa-B ligand (RANKL) and bone resorption in vivo. METHODS: Mouse bone marrow-derived macrophages cultured in vitro, the effect of macrophage colony stimulating factor and PSP (5, 10, 20, 40, 80,160, 320, 640, 1280, 2560 mg/L) on the proliferation of mouse BM-MNCs was detected by cell counting kit-8 assay to determine the PSP concentration range; the mouse BMMs were cultured and induced in DMEM medium containing macrophage colony stimulating factor, RANKL and 5, 10, 20, 40, 80,160, 320, 640 mg/L PSP, respectively; those cultured without PSP served as control group. The morphological changes of cells were observed under an inverted microscope.; the number of osteoclasts was detected by tartrate-resistant acid phosphatase staining; the mRNA expression levels of osteoclast-related genes including tartrate-resistant acid phosphatase, matrix metalloproteinase-9, cathepsin K, and nuclear factor of activated T cells c1 were evaluated by quantitative real-time PCR. A mouse model of calvarial osteolysis induced by lipopolysaccharide was established to receive PSP intervention, and then micro CT scanning, three-dimensional reconstruction and relevants software were used for quantitative analysis of bone volume/volume percentage, trabecular number, trabecular bone spacing and thickness. The number of osteoclasts was identified by tartrate-resistant acid phosphatase staining and quantitative analysis of bone resorption area was conducted. RESULTS AND CONCLUSION: Compared with the control group, the concentration of PSP below 640 mg/L showed no significant effect on the proliferation of BMMs (P > 0.05). Different concentrations of PSP (40-640 mg/L) significantly reduced the number of osteoclasts, osteoclast differentiation and maturation, and the mRNA expression levels of tartrate-resistant acid phosphatase, matrix metalloproteinase-9, cathepsin K, and nuclear factor of activated T cells c1 TRAP, MMP-9, CtsK and NFATc1 (P < 0.05). Compared with lipopolysaccharide, PSP could effectively alleviate the lipopolysaccharide-induced calvarial osteolysis, and the bone volume/volume percentage, trabecular number, and trabecular bone spacing were significantly decreased (P < 0.05); additionally, the number of osteoclasts and the area of bone resorption were decreased significantly (P < 0.01). To conclude, PSP can inhibit the differentiation and maturation of mouse BMMs to osteoclasts and alleviate lipopolysaccharide-induced calvarial osteolysis.