1.Quality control of the multi-centre clinical trial on PET/CT brain imaging
Zizhao JU ; Huiwei ZHANG ; Qi HUANG ; Jingjie GE ; Rongbing JIN ; Rong TIAN ; Xiangsong ZHANG ; Shuo HU ; Jie LU ; Xiaoli LAN ; Li HUO ; Yihui GUAN ; Chuantao ZUO ; Kuangyu SHI
Chinese Journal of Nuclear Medicine and Molecular Imaging 2022;42(9):550-555
Multi-centre clinical trials on PET/CT brain imaging are complex to organize and require careful co-ordination and management. This article describes considerations, which are necessary when designing and starting a multi-centre clinical trial on PET/CT brain imaging, based on guidelines and multi-center clinical brain imaging studies, providing references for further studies.
2.18F-Florzolotau PET Imaging of Abnormal tau Protein Deposition in Alzheimer's Disease
Fangyang JIAO ; Jiaying LU ; Ming LI ; Qi HUANG ; Weiqi BAO ; Zhengwei ZHANG ; Zizhao JU ; Qianhua ZHAO ; Yihui GUAN ; Chuantao ZUO ; Huiwei ZHANG
Chinese Journal of Medical Imaging 2024;32(5):426-430,438
Purpose To explore the value of the new generation tau PET tracer 18F-Florzolotau in Alzheimer's disease(AD)at different stages.Materials and Methods Twenty-five MCI patients and sixty-one AD patients with positive β-amyloid status in Huashan Hospital,Fudan University from February 2020 to January 2022 were retrospectively enrolled with 18F-Florzolotau PET imaging and demographic and clinical data.The pre-processed PET images were analyzed by SPM two-sample t-test between MCI and AD groups,and the standardized uptake value ratios(SUVR)were extracted from the region of interest defined by SPM analysis(P<0.001);scaled subprofile model/principal component analysis was used to construct the different tau related patterns(MCItauRP,ADtauRP)and calculate the corresponding expression values.The classification efficiency of SUVR and MCItauRP,ADtauRP expression values was evaluated by receiver operating characteristic curve.Results Compared with MCI patients,tau protein deposition of AD patients was increased mainly in the bilateral temporal,occipital lobe(P<0.001),and the SUVR of these brain region in the AD group was higher than that in the MCI group(Z=-3.164,P<0.00l);the expression values of MCItauRP and ADtauRP were significantly different between the AD group and MCI group(t=3.72,Z=-3.51;both P<0.001),and these expression values of AD patients were higher than those in the MCI group;the accuracy of tauRP expression values and SUVR for the differentiation between the AD and MCI group were 61.63%,65.12%and 65.12%,respectively;the sensitivity was 88.00%,96.00%and 100.00%,respectively;the specificity was 50.82%,52.46%and 50.82%,respectively.Conclusion The new tau PET can identify and distinguish the differences in tau protein deposition between AD and MCI patients.However,the classification and diagnosis efficiency is not high.In the future,it is necessary to find a more ideal analysis method.
3.Harmonization of 18F-FDG PET brain imaging based on ComBat method: a pilot study
Fangyang JIAO ; Dan WANG ; Yuhua ZHU ; Jiaying LU ; Zizhao JU ; Qian XU ; Jingjie GE ; Tao HUA ; Ping WU ; Kuangyu SHI ; Yihui GUAN ; Chuantao ZUO
Chinese Journal of Nuclear Medicine and Molecular Imaging 2024;44(7):412-416
Objective:To perform harmonization based on the ComBat method for PET brain imaging scanned by different types of scanners from the same manufacturer and explored its effect on center effect.Methods:The three-dimensional (3D) Hoffman brain model was scanned by two different PET/CT instruments (Siemens Biograph64 TruePoint and Biograph128 mCT). Fourteen healthy subjects (8 males, 6 females, age: (57.7±9.5) years) underwent 18F-FDG PET/CT on Siemens Biograph64 TruePoint and 12 healthy subjects (9 males, 3 females, age: (55.8±10.5) years) underwent 18F-FDG PET/CT on Siemens Biograph128 mCT (all from Huashan Hospital, Fudan University; from November 2020 to March 2023). The whole brain was divided into 116 brain regions based on the anatomical automatic labeling (AAL) brain template. The ComBat method was applied to harmonized the PET data from brain model and healthy subjects. Mann-Whitney U test was performed on the radioactive counts and SUV ratios (SUVR) before and after homogenization acquired by both PET/CT instruments. Voxel-based statistical parametric mapping (SPM) independent-sample t test was also performed on data of healthy subjects. Results:In 3D Hoffman brain model, radioactivity counts (5 590.33(4 961.67, 6 102.95) vs 6 116.03(5 420.97, 6 660.66); z=-9.35, P<0.001) and SUVR (1.35(1.19, 1.47) vs 1.37(1.21, 1.49); z=-3.63, P<0.001) were significantly different between the two PET/CT scanners before harmonization and not after harmonization (radioactivity counts: 5 845.95(5 192.68, 6 378.63) vs 5 859.17(5 193.84, 6 380.52); SUVR: 1.35(1.20, 1.48) vs 1.36(1.20, 1.49); both z=-0.68, both P=0.498). In the healthy subjects, radioactive counts in 19 brain regions (12 422.78(11 181.60, 13 424.28)-18 166.40(15 882.80, 18 666.27); z values: from -3.24 to -2.06, all P<0.05) and SUVR in 40 brain regions (1.46(1.41, 1.52)-2.28(2.16, 2.36); z values: from -3.65 to -1.70, all P<0.05) were significantly different between the two scanners before harmonization, while after homogenization there were no statistical differences for all 116 brain regions (radioactivity counts: 9 243.55(8 502.38, 9 854.87)-20 419.60(19 931.51, 21 179.43); z values: from -0.72 to 0, all P>0.05; SUVR: 1.04(1.01, 1.09)-2.32(2.24, 2.40); z values: from -0.82 to 0, all P>0.05). SPM showed that significant differences of glucose metabolism in the cerebral cortex, basal ganglia, midbrain and cerebellum were found in healthy subjects between the two PET/CT scanners before homogenization, and brain regions with obvious differences reduced after homogenization. Conclusion:ComBat harmonization method is efficient at removing the center effect among different types of PET/CT scanners from the same manufacturer and may provide a simple and easy-to-implement homogenization for multicenter brain imaging studies.