1.Clinical and genetic analysis of a child with Culler-Jones syndrome due to variant of GLI2 gene.
Yanshi FAN ; Shuxia DING ; Junhua WU ; Haiyan QIU
Chinese Journal of Medical Genetics 2023;40(2):217-221
OBJECTIVE:
To explore the genetic basis for a child featuring short stature and postaxial polydactyly.
METHODS:
A child who presented at Ningbo Women & Children's Hospital in May 2021 due to the"discovery of growth retardation for more than two years" was selected as the subject. Peripheral blood samples of the child and his parents were collected for the extraction of genomic DNA. Whole exome sequencing was carried out for the child, and candidate variant was verified by Sanger sequencing of his family members.
RESULTS:
The child was found to harbor a heterozygous c.3670C>T (p.Q1224) variant of the GLI2 gene, which may lead to premature termination of protein translation. The variant was not detected in either parent.
CONCLUSION
The child was diagnosed with Culler-Jones syndrome. The c.3670C>T (p.Q1224*) variant of the GLI2 gene probably underlay the disease in this child.
Child
;
Female
;
Humans
;
Fingers
;
Mutation
;
Nuclear Proteins/genetics*
;
Polydactyly/genetics*
;
Toes
;
Zinc Finger Protein Gli2/genetics*
2.Effect of Smo SiRNA-mediated Hedgehog Signaling Pathway Inhibition on Palatal Fusion.
Qian ZHOU ; Hai Feng WU ; Yuan WEI ; Wen Li ZHU
Biomedical and Environmental Sciences 2016;29(8):594-598
We used Smo siRNA to inhibit hedgehog signaling pathway in embryonic day (E) 13 palatal shelves in organ culture. SiRNA 4 was chosen as the most efficient from four synthesized Smo siRNAs. Palatal shelf fusion rate of 4 μg/mL cyclopamine group was the lowest and significantly lower than that of blank control group (P<0.05), and that of siRNA 4 group was also lower than that of blank control group (P=0.183). At 48 h after transfection, Smo protein level of siRNA 4 group was 64.8% lower than that of blank control group (P<0.05), and Gli1 protein level of 4 μg/mL cyclopamine group was 68.9% lower than that of blank control group (P<0.05). Hedgehog signaling pathway inhibition decreased palatal fusion in organ culture, probably owing to downregulation of Smo and Gli1 proteins.
Animals
;
Hedgehog Proteins
;
genetics
;
metabolism
;
Kruppel-Like Transcription Factors
;
genetics
;
metabolism
;
Mice
;
Nerve Tissue Proteins
;
genetics
;
metabolism
;
Palate
;
embryology
;
metabolism
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Signal Transduction
;
Zinc Finger Protein Gli2
;
Zinc Finger Protein Gli3