1.Effects of echinomycin on endothelin-2 expression and ovulation in immature rats primed with gonadotropins.
Zhengchao WANG ; Zhenghong ZHANG ; Yanqing WU ; Liyun CHEN ; Qianping LUO ; Jisen ZHANG ; Jiajie CHEN ; Zimiao LUO ; Xiaohong HUANG ; Yong CHENG
Experimental & Molecular Medicine 2012;44(10):615-621
Echinomycin is a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity, which plays a crucial role in ovarian ovulation in mammalians. The present study was designed to test the hypothesis that hypoxia-inducible factor (HIF)-1alpha-mediated endothelin (ET)-2 expressions contributed to ovarian ovulation in response to human chorionic gonadotropin (hCG) during gonadotropin-induced superuvulation. By real-time RT-PCR analysis, ET-2 mRNA level was found to significantly decrease in the ovaries after echinomycin treatment, while HIF-1alpha mRNA and protein expression was not obviously changed. Further analysis also showed that these changes of ET-2 mRNA were consistent with HIF-1 activity in the ovaires, which is similar with HIF-1alpha and ET-2 expression in the granulosa cells with gonadotropin and echinomycin treatments. The results of HIF-1alpha and ET-2 expression in the granulosa cells transfected with cis-element oligodeoxynucleotide (dsODN) under gonadotropin treatment further indicated HIF-1alpha directly mediated the transcriptional activation of ET-2 during gonadotropin-induced superuvulation. Taken together, these results demonstrated that HIF-1alpha-mediated ET-2 transcriptional activation is one of the important mechanisms regulating gonadotropin-induced mammalian ovulatory precess in vivo.
Animals
;
Cells, Cultured
;
Chorionic Gonadotropin/*pharmacology
;
Echinomycin/*pharmacology
;
Endothelin-2/genetics/*metabolism
;
Female
;
Gonadotropins, Equine/*pharmacology
;
Granulosa Cells/drug effects/metabolism
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/*antagonists & inhibitors/genetics/metabolism/physiology
;
Oligonucleotides/genetics
;
Ovary/cytology/drug effects/physiology
;
Rats
;
Rats, Sprague-Dawley
;
Superovulation/*drug effects
;
Transcriptional Activation
2.Biomimetic nanoparticles for inflammation targeting.
Kai JIN ; Zimiao LUO ; Bo ZHANG ; Zhiqing PANG
Acta Pharmaceutica Sinica B 2018;8(1):23-33
There have been many recent exciting developments in biomimetic nanoparticles for biomedical applications. Inflammation, a protective response involving immune cells, blood vessels, and molecular mediators directed against harmful stimuli, is closely associated with many human diseases. As a result, biomimetic nanoparticles mimicking immune cells can help achieve molecular imaging and precise drug delivery to these inflammatory sites. This review is focused on inflammation-targeting biomimetic nanoparticles and will provide an in-depth look at the design of these nanoparticles to maximize their benefits for disease diagnosis and treatment.
3.All-stage targeted therapy for the brain metastasis from triple-negative breast cancer.
Zimiao LUO ; Sunyi WU ; Jianfen ZHOU ; Weixia XU ; Qianzhu XU ; Linwei LU ; Cao XIE ; Yu LIU ; Weiyue LU
Acta Pharmaceutica Sinica B 2023;13(1):359-371
Brain metastasis is a common and serious complication of breast cancer, which is commonly associated with poor survival and prognosis. In particular, the treatment of brain metastasis from triple-negative breast cancer (BM-TNBC) has to face the distinct therapeutic challenges from tumor heterogeneity, circulating tumor cells (CTCs), blood-brain barrier (BBB) and blood-tumor barrier (BTB), which is in unmet clinical needs. Herein, combining with the advantages of synthetic and natural targeting moieties, we develop a "Y-shaped" peptide pVAP-decorated platelet-hybrid liposome drug delivery system to address the all-stage targeted drug delivery for the whole progression of BM-TNBC. Inherited from the activated platelet, the hybrid liposomes still retain the native affinity toward CTCs. Further, the peptide-mediated targeting to breast cancer cells and transport across BBB/BTB are demonstrated in vitro and in vivo. The resultant delivery platform significantly improves the drug accumulation both in orthotopic breast tumors and brain metastatic lesions, and eventually exhibits an outperformance in the inhibition of BM-TNBC compared with the free drug. Overall, this work provides a promising prospect for the comprehensive treatment of BM-TNBC, which could be generalized to other cell types or used in imaging platforms in the future.