1.Computational chemistry in structure-based drug design.
Ran CAO ; Wei LI ; Han-Zi SUN ; Yu ZHOU ; Niu HUANG
Acta Pharmaceutica Sinica 2013;48(7):1041-1052
Today, the understanding of the sequence and structure of biologically relevant targets is growing rapidly and researchers from many disciplines, physics and computational science in particular, are making significant contributions to modern biology and drug discovery. However, it remains challenging to rationally design small molecular ligands with desired biological characteristics based on the structural information of the drug targets, which demands more accurate calculation of ligand binding free-energy. With the rapid advances in computer power and extensive efforts in algorithm development, physics-based computational chemistry approaches have played more important roles in structure-based drug design. Here we reviewed the newly developed computational chemistry methods in structure-based drug design as well as the elegant applications, including binding-site druggability assessment, large scale virtual screening of chemical database, and lead compound optimization. Importantly, here we address the current bottlenecks and propose practical solutions.
Computational Biology
;
Drug Design
;
Drug Discovery
;
High-Throughput Screening Assays
;
Molecular Docking Simulation
;
Molecular Dynamics Simulation
;
Quantitative Structure-Activity Relationship
2.Effect and mechanism of total flavonoids of bugloss on rats with myocardial ischemia and reperfusion injury.
Xiao-Na XU ; Zi-Ran NIU ; Shou-Bao WANG ; Yu-Cai CHEN ; Li GAO ; Lian-Hu FANG ; Guan-Hua DU
Acta Pharmaceutica Sinica 2014;49(6):875-881
This study is to investigate the effect of total flavonoids of Uygur medicine bugloss (BTF) on rats with myocardial ischemia/reperfusion injury, and to explore the mechanisms by which it acts. Left anterior descending (LAD) coronary artery in rats was occluded for 30 min followed by 4 h reperfusion. Meanwhile, BTF dissolved in saline was administered intraperitoneally at dosage of 10, 30 and 50 mg x kg(-1). Electrocardiograph, infarction index, serum myocardial enzymes and heart function were determined to evaluate the effect of BTF. Some other observations were carried out to explore whether inhibiting inflammation and apoptosis is involved in the mechanisms underlying BTF. Our results showed that in ischemia/reperfusion injured rats BTF could dose-dependently reduce myocardial infarction index and myocardial enzyme leakage, and enhance heart function, indicating that it possesses significant cardio protection. ELISA analysis showed that BTF could decrease the content of myocardial inflammatory cytokines such as IL-1beta, IL-6 and TNF-alpha. Western-blotting confirmed that BTF could increase the expression of anti-apoptotic protein Bcl-2 and reduce the expression of proapoptosis protein Bax. Further more, the phosphorylation level of PI3K and Akt was upregulated by BTF treatment. BTF can protect rat against myocardial ischemia/reperfusion injury. Anti-inflammation and inhibition of apoptosis through upregulating PI3K/Akt signal pathway may contribute to the protective effect of BTF.
Animals
;
Apoptosis
;
Apoptosis Regulatory Proteins
;
Boraginaceae
;
chemistry
;
Flavonoids
;
pharmacology
;
Heart
;
Interleukin-6
;
Myocardial Infarction
;
Myocardial Reperfusion Injury
;
drug therapy
;
Myocardium
;
Phosphatidylinositol 3-Kinases
;
Phosphorylation
;
Protective Agents
;
Proto-Oncogene Proteins c-akt
;
Rats
;
Signal Transduction
;
Tumor Necrosis Factor-alpha
;
bcl-2-Associated X Protein
3.Evaluation of the preventive effect of DL0805-2 against monocrotaline induced rat pulmonary arterial hypertension
Di CHEN ; Tian-yi YUAN ; Yu-cai CHEN ; Hui-fang ZHANG ; Zi-ran NIU ; Lian-hua FANG ; Guan-hua DU
Acta Pharmaceutica Sinica 2021;56(1):208-216
In the treatment of hypertensive crisis, the novel Rho kinase inhibitor DL0805-2 can rapidly lower systematic blood pressure, reduce pulmonary artery pressure, and has a significant protective effect on lung injury. This experiment intends to evaluate the efficacy of DL0805-2 against pulmonary arterial hypertension (PAH) and preliminarily reveals its underlying mechanism. Animal welfare and experimental procedures are in accordance with the provision of the Animal Ethics Committee of the Institute of Materia Medica, Chinese Academy of Medical Sciences. Sprague Dawley (SD) rats were randomly divided into DL0805-2 low, medium, and high dose groups (1, 3, and 10 mg·kg-1), bosentan positive control group, model group, and blank control group. The drug was administered daily on the 7th day after model establishment by monocrotaline injection. On the 25th day of the experiment, relevant indicators were examined to observe the therapeutic effect of DL0805-2 on pulmonary hypertension. DL0805-2 significantly relieved the abnormal changes in the physiological parameters related to PAH induced by monocrotaline, including reducing right ventricular systolic pressure, alleviating cardiac damage caused by pressure overload, and reducing the levels of endothelin-1 and inflammatory factors in lung tissues. DL0805-2 also attenuated pulmonary arteries remodeling. It was preliminarily discovered that DL0805-2 exerts preventive and therapeutic effect on PAH through Rho-kinase pathway. Our results suggested that DL0805-2 had good therapeutic effects on monocrotaline-induced PAH rat model. It intervened early in the disease process, effectively prevented the development of the disease, and reduced the mortality of the diseased animals. The mechanism is related to Rho-kinase pathway.
4.Course of disease and related epidemiological parameters of COVID-19: a prospective study based on contact tracing cohort.
Yan ZHOU ; Wen Jia LIANG ; Zi Hui CHEN ; Tao LIU ; Tie SONG ; Shao Wei CHEN ; Ping WANG ; Jia Ling LI ; Yun Hua LAN ; Ming Ji CHENG ; Jin Xu HUANG ; Ji Wei NIU ; Jian Peng XIAO ; Jian Xiong HU ; Li Feng LIN ; Qiong HUANG ; Ai Ping DENG ; Xiao Hua TAN ; Min KANG ; Gui Min CHEN ; Mo Ran DONG ; Hao Jie ZHONG ; Wen Jun MA
Chinese Journal of Preventive Medicine 2022;56(4):474-478
Objective: To analyze the course of disease and epidemiological parameters of COVID-19 and provide evidence for making prevention and control strategies. Methods: To display the distribution of course of disease of the infectors who had close contacts with COVID-19 cases from January 1 to March 15, 2020 in Guangdong Provincial, the models of Lognormal, Weibull and gamma distribution were applied. A descriptive analysis was conducted on the basic characteristics and epidemiological parameters of course of disease. Results: In total, 515 of 11 580 close contacts were infected, with an attack rate about 4.4%, including 449 confirmed cases and 66 asymptomatic cases. Lognormal distribution was fitting best for latent period, incubation period, pre-symptomatic infection period of confirmed cases and infection period of asymptomatic cases; Gamma distribution was fitting best for infectious period and clinical symptom period of confirmed cases; Weibull distribution was fitting best for latent period of asymptomatic cases. The latent period, incubation period, pre-symptomatic infection period, infectious period and clinical symptoms period of confirmed cases were 4.50 (95%CI:3.86-5.13) days, 5.12 (95%CI:4.63-5.62) days, 0.87 (95%CI:0.67-1.07) days, 11.89 (95%CI:9.81-13.98) days and 22.00 (95%CI:21.24-22.77) days, respectively. The latent period and infectious period of asymptomatic cases were 8.88 (95%CI:6.89-10.86) days and 6.18 (95%CI:1.89-10.47) days, respectively. Conclusion: The estimated course of COVID-19 and related epidemiological parameters are similar to the existing data.
COVID-19
;
Cohort Studies
;
Contact Tracing
;
Humans
;
Incidence
;
Prospective Studies