1.Oxidative Stress-related Signaling Pathways and Antioxidant Therapy in Alzheimer’s Disease
Li TANG ; Yun-Long SHEN ; De-Jian PENG ; Tian-Lu RAN ; Zi-Heng PAN ; Xin-Yi ZENG ; Hui LIU
Progress in Biochemistry and Biophysics 2025;52(10):2486-2498
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, functional impairment, and neuropsychiatric symptoms. It represents the most prevalent form of dementia among the elderly population. Accumulating evidence indicates that oxidative stress plays a pivotal role in the pathogenesis of AD. Notably, elevated levels of oxidative stress have been observed in the brains of AD patients, where excessive reactive oxygen species (ROS) can cause extensive damage to lipids, proteins, and DNA, ultimately compromising neuronal structure and function. Amyloid β‑protein (Aβ) has been shown to induce mitochondrial dysfunction and calcium overload, thereby promoting the generation of ROS. This, in turn, exacerbates Aβ aggregation and enhances tau phosphorylation, leading to the formation of two pathological features of AD: extracellular Aβ plaque deposition and intracellular neurofibrillary tangles (NFTs). These events ultimately culminate in neuronal death, forming a vicious cycle. The interplay between oxidative stress and these pathological processes constitutes a core link in the pathogenesis of AD. The signaling pathways mediating oxidative stress in AD include Nrf2, RCAN1, PP2A, CREB, Notch1, NF‑κB, ApoE, and ferroptosis. Nrf2 signaling pathway serves as a key regulator of cellular redox homeostasis, exerts important antioxidant capacity and protective effects in AD. RCAN1 signaling pathway, as a calcineurin inhibitor, and modulates AD progression through multiple mechanisms. PP2A signaling pathway is involved in regulating tau phosphorylation and neuroinflammation processes. CREB signaling pathway contributes to neuroplasticity and memory formation; activation of CREB improves cognitive function and reduce oxidative stress. Notch1 signaling pathway regulates neuronal development and memory, participates in modulation of Aβ production, and interacts with Nrf2 toco-regulate antioxidant activity. NF‑κB signaling pathway governs immune and inflammatory responses; sustained activation of this pathway forms “inflammatory memory”, thereby exacerbating AD pathology. ApoE signaling pathway is associated with lipid metabolism; among its isoforms, ApoE-ε4 significantly increases the risk of AD, leading to elevated oxidative stress, abnormal lipid metabolism, and neuroinflammation. The ferroptosis signaling pathway is driven by iron-dependent lipid peroxidation, and the subsequent release of lipid peroxidation products and ROS exacerbate oxidative stress and neuronal damage. These interconnected pathways form a complex regulatory network that regulates the progression of AD through oxidative stress and related pathological cascades. In terms of therapeutic strategies targeting oxidative stress, among the drugs currently used in clinical practice for AD treatment, memantine and donepezil demonstrate significant therapeutic efficacy and can improve the level of oxidative stress in AD patients. Some compounds with antioxidant effects (such asα-lipoic acid and melatonin) have shown certain potential in AD treatment research and can be used as dietary supplements to ameliorate AD symptoms. In addition, non-drug interventions such as calorie restriction and exercise have been proven to exerted neuroprotective effects and have a positive effect on the treatment of AD. By comprehensively utilizing the therapeutic characteristics of different signaling pathways, it is expected that more comprehensive multi-target combination therapy regimens and combined nanomolecular delivery systems will be developed in the future to bypass the blood-brain barrier, providing more effective therapeutic strategies for AD.
2.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
3.Research progress on treatment of non-small cell lung cancer with traditional Chinese medicine based on immunotherapy.
Ying-Ying ZHAO ; Zi-Yu LU ; Sheng-Long LI ; Mian-Hua WU
China Journal of Chinese Materia Medica 2025;50(16):4415-4424
Non-small cell lung cancer(NSCLC) is the most common type of lung cancer worldwide, accounting for approximately 80%-85% of all lung cancer cases. Despite the clinical benefits of traditional treatments such as surgery, chemotherapy, and radiotherapy, challenges such as the high rate of postoperative recurrence and resistance of some patients to chemotherapy and targeted therapies limit their effectiveness, necessitating the exploration of more effective treatment options. In recent years, immunotherapy, especially immune checkpoint inhibitors(ICIs), has revolutionized NSCLC treatment and significantly improved the survival prognosis of some patients. However, the efficacy of immunotherapy is limited by tumor immune escape, drug resistance, and immune-related adverse events(irAEs), which have not been effectively addressed. Traditional Chinese medicine(TCM), as a traditional therapeutic approach, has shown unique advantages in NSCLC treatment, with studies indicating its ability to enhance immune responses, regulate immune checkpoints, and improve the tumor microenvironment(TME), thus boosting the efficacy of immunotherapy. Additionally, the multi-target and multi-pathway effects of TCM help mitigate the side effects of immunotherapy, further improving efficacy and safety. This review summarizes the latest research progress of TCM in NSCLC immunotherapy, focusing on the research results of TCM in enhancing the effect of immunotherapy by regulating immune cells, optimizing the immune microenvironment, and being applied with ICIs, etc. The latest research progress of TCM in alleviating irAEs is also elucidated. The aim is to provide theoretical support for the clinical application of TCM in the prevention and treatment of NSCLC and the research and development of new drugs and promote the optimization and development of combined immunotherapy and TCM treatment models.
Humans
;
Carcinoma, Non-Small-Cell Lung/therapy*
;
Lung Neoplasms/therapy*
;
Immunotherapy/methods*
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Animals
;
Tumor Microenvironment/drug effects*
4.A new strategy for quality evaluation of Panax notoginseng based on the correlation between macroscopic characteristics and chemical profiling
Zi-ying WANG ; Wen-xiang FAN ; Long-chan LIU ; Mei-long LU ; Li-hua GU ; Lin-nan LI ; Li YANG ; Zheng-tao WANG
Acta Pharmaceutica Sinica 2024;59(8):2326-2336
The traditional commodity specifications of Chinese medicinal materials are mainly divided into different grades based on macroscopic characteristics. As the basis for high quality and good price, there is still a lack of systematic evaluation on whether they are consistent with the current standards and whether they can reflect the internal quality of medicinal material.
5.A new hexacyclic triterpenoid with 13α ,27-cyclopropane ring from Glechoma longituba
Qian ZHANG ; Mei-long LU ; Tian-zi LIU ; Yue-ting ZHANG ; Ao ZHU ; Li-li DING ; Zhu-zhen HAN ; Li-hua GU ; Zheng-tao WANG
Acta Pharmaceutica Sinica 2024;59(5):1334-1340
In order to study the compounds from
6.Effect of ceria nanoparticles on activity of DSS-induced colitis in mice by eliminating active oxygen species
Yuhan LU ; Yahong SHI ; Manmei LONG ; Zi WANG ; Yingwei WU
Journal of Shanghai Jiaotong University(Medical Science) 2024;44(1):35-42
Objective·To investigate the effect of ceria nanoparticles-polyethylene glycol(CeNP-PEG)on scavenging reactive oxygen species(ROS)and alleviating disease activity in dextran sulphate sodium(DSS)-induced colitis mice.Methods·CeNP was synthesized with the hydrates of cerium acetate,oleamine,and xylene,which was modified with polyethylene glycol-stearyl phosphatidylethanolamine(mPEG-DPSE)to obtain CeNP-PEG.Then CeNP-PEG was purified.The particle size and zeta potential of CeNP-PEG were measured by using transmission electron microscopy(TEM)and dynamic light scattering(DLS).Mouse macrophages(Raw264.7)were cultured in vitro and induced to a pro-inflammatory phenotype(M1 phenotype).M1 macrophages were treated with 0.5 μg/mL and 1.0 μg/mL CeNP-PEG,respectively,and then Western blotting was used to detect the expression changes of the proteins related with nuclear factor-κB(NF-κB)signaling pathway.DSS-induced colitis mice models were constructed,and CeNP-PEG(1.0 mg/mL)was intravenously administrated for 3 times via tail vein during the modeling period.Meanwhile,the body weight,fecal characteristics,and frequency of rectal bleeding in mice were monitored in the normal control group(Normal group),the model group(DSS group),and the CeNP-PEG treatment group.The disease activity index(DAI)was calculated to evaluate the intestinal inflammation.The level of ROS in mouse intestinal tissues was detected by dihydroethidine(DHE)staining and the mRNA expression levels of inflammatory cytokines interferon-γ(Ifn-γ),interleukin-6(Il-6),Il-1β and tumor necrosis factor-α(Tnf-α)were detected by real-time quantitative PCR(RT-qPCR).Results·The hydrated particle size of synthesized CeNP-PEG was(6.96±0.27)nm,and the average zeta potential was(-6.02±1.31)mV.Western blotting results showed that the expression of p-P65 increased in the pro-inflammatory macrophages compared with the control group.The expression of NF-κB inhibitor-α(IκB-α)decreased,and their expressions tended to recover after the intervention of different concentrations of CeNP-PEG.In the DSS-induced colitis models,mice in the CeNP-PEG treatment group lost less weight than those in the DSS group(P= 0.000)and had lower DAI scores(P=0.000).The RT-qPCR results of intestinal tissues showed that the mRNA levels of Ifn-γ,Il-1β,Il-6 and Tnf-α in the DSS group were significantly up-regulated compared with those in the Normal group(P=0.000),and all of them significantly decreased in the CeNP-PEG treatment group.The results of DHE staining showed that the fluorescence intensity of intestinal tissues in the DSS group was significantly enhanced than that in the Normal group,and the fluorescence intensity decreased in the CeNP-PEG treatment group.Conclusion·CeNP-PEG can inhibit the expression of intestinal inflammatory factors and the activation of NF-κB-related inflammatory pathway of pro-inflammatory macrophages,eliminate intestinal ROS,improve the intestinal inflammatory microenvironment,and alleviate the disease activity of DSS-induced colitis in mice.
7.Correlation analysis between eNOS gene single nucleotide polymorphism and systemic lupus erythematosus in Hainan
Xuan ZHANG ; Hui-Tao WU ; Qi ZHANG ; Gui-Ling LIN ; Xi-Yu YIN ; Wen-Lu XU ; Zhe WANG ; Zi-Man HE ; Ying LIU ; Long MI ; Yan-Ping ZHUANG ; Ai-Min GONG
Medical Journal of Chinese People's Liberation Army 2024;49(9):986-991
Objective To investigate the relationship between single nucleotide polymorphisms(SNPs)in the eNOS gene and genetic susceptibility to systemic lupus erythematosus(SLE)in Hainan.Methods Blood samples were collected from SLE patients(SLE group,n=214)and healthy controls(control group,n=214)from January 2020 to December 2022 at the First Affiliated Hospital of Hainan Medical College and Hainan Provincial People's Hospital.The bases of eNOS gene rs3918188,rs1799983 and rs1007311 loci in each group were detected by SNaPshot sequencing technology.Logistic regression was used to analyze the correlation between genotypes,alleles and gene models(dominant model,recessive model,and overdominant model)of the above 3 target loci of the eNOS gene and genetic susceptibility to SLE.Haplotype analysis was conducted using HaploView 4.2 software to investigate the relationship between haploid and genetic susceptibility to SLE at each site.Results The results of logistic regression analysis revealed that the CC genotype and the C allele at rs3918188 locus were risk factors for genetic susceptibility to SLE(CC vs.AA:OR=2.449,P<0.05;C vs.A:OR=2.133,P<0.001).In recessive model at rs3918188 locus,CC genotype carriers had an increased risk of SLE development compared with AA+AC genotype carriers(OR=2.774,P<0.001).In contrast,in overdominant model at this locus,AC genotype carriers had a decreased risk of SLE occurrence compared with AA+CC genotype carriers(OR=0.385,P<0.001).In addition,polymorphisms of rs1799983 and rs1007311 were not associated with susceptibility to SLE in genotype,allele type and the 3 genetic models(P>0.05).Haplotype analysis revealed a strong linkage disequilibrium between the rs1007311 and rs1799983 loci of the eNOS gene,but no significant correlation was found between haplotype and genetic susceptibility to SLE(P>0.05).Conclusion The CC genotype and C allele at rs3918188 locus of eNOS gene may be risk factors for SLE in Hainan,while the risk of SLE occurrence is reduced in carriers of AC genotype under the overdominant model.
8.Molecular mechanism of Xinyang Tablets in improving myocardial fibrosis in uremic cardiomyopathy based on single-cell sequencing technology.
Shi-Hao NI ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Jin LI ; Xing-Ling CHEN ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG
China Journal of Chinese Materia Medica 2024;49(24):6746-6754
This study aimed to investigate the ameliorative effect of Xinyang Tablets on myocardial fibrosis in uremic cardiomyopathy(UCM) using single-cell sequencing technology. UCM mouse models were established by 5/6 nephrectomy(NPM) and randomly divided into the model group, Xinyang Tablets group, and sham-operated(sham) group as the control. The Xinyang Tablets group received postoperative interventions of Xinyang Tablets(0.34 g·kg~(-1)). After eight weeks, the hearts of the mice in each group were disassociated and subjected to 10×Genomics single-cell sequencing. The data were subjected to t-SNE dimensionality reduction, K-means clustering, and CellMarker annotation prior to analyzing differential expression and cell differentiation trajectories using the Seurat and Monocle3 tools. Additionally, the CellChat tool was used to parse intercellular signaling communication. The results showed that a total of nine types of cells including fibroblasts, endothelial cells, and immune cells were identified in this study. The single-cell expression results of fibroblasts and Gene Ontology(GO) enrichment analysis showed that Xinyang Tablets regulated myocardial fibrosis factors and related signals. Mimetic timing analysis identified three major differentiation trajectories of mouse cardiac fibroblasts and identified the expression of secreted phosphoprotein 1(Spp1) as consistent with the fibroblast differentiation trajectory. Cellular interaction network analysis showed that the communication signals between mouse cardiac fibroblasts and other cells were weakened in the Xinyang Tablets group compared with the model group. The results of ligand-receptor interaction analysis showed that the interaction between myeloid cell-derived osteopontin(OPN) and cardiac fibroblasts and between myeloid cell Spp1 ligand and cardiac fibroblast receptor of mice in the Xinyang Tablets group was weakened compared with the model group. In conclusion, Xinyang Tablets may improve myocardial fibrosis in UCM by inhibiting both endogenous and exogenous OPN at the single-cell level.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Cardiomyopathies/pathology*
;
Single-Cell Analysis
;
Male
;
Fibrosis/drug therapy*
;
Myocardium/metabolism*
;
Uremia/metabolism*
;
Tablets
;
Mice, Inbred C57BL
;
Humans
9.Platelet Transfusion Strategies for MASPAT-Matched Platelet Transfusion Failed Patient with Allogeneic Hematopoietic Stem Cell Transplantation.
Lu YANG ; Chun-Ya MA ; Li-Hui FU ; Sheng-Fei TAI ; Ming-Zi MA ; Xiao-Long ZHONG ; Bin FAN ; Xiao-Xing WANG ; De-Qing WANG ; Yang YU
Journal of Experimental Hematology 2023;31(3):850-854
OBJECTIVE:
To investigate the causes of ineffectiveness of platelet transfusion with monoclonal antibody solid phase platelet antibody test (MASPAT) matching in patients with allogeneic hematopoietic stem cell transplantation and explore the strategies of platelet transfusion.
METHODS:
A case of donor-specific HLA antibodies (DSA) induced by transfusion which ultimately resulted in transplantation failure and ineffective platelet transfusion with MASPAT matching was selected, and the causes of ineffective platelet transfusion and platelet transfusion strategy were retrospectively analyzed.
RESULTS:
The 32-year-old female patient was diagnosed as acute myeloid leukemia (high risk) in another hospital with the main symptoms of fever and leukopenia, who should be admitted for hematopoietic stem cell transplantation after remission by chemotherapy. In the course of chemotherapy, DSA was generated due to platelet transfusion, and had HLA gene loci incompatible with the donor of the first transplant, leading to the failure of the first transplant. The patient received platelet transfusion for several times before and after transplantation, and the results showed that the effective rate of MASPAT matched platelet transfusion was only 35.3%. Further analysis showed that the reason for the ineffective platelet transfusion was due to the missed detection of antibodies by MASPAT method. During the second hematopoietic stem cell transplantation, the DSA-negative donor was selected, and the matching platelets but ineffective transfusion during the primary transplantation were avoided. Finally, the patient was successfully transplanted and discharged from hospital.
CONCLUSIONS
DSA can cause graft failure or render the graft ineffective. For the platelet transfusion of patients with DSA, the platelet transfusion strategy with matching type only using MASPAT method will miss the detection of antibodies, resulting in invalid platelet transfusion.
Female
;
Humans
;
Adult
;
Platelet Transfusion
;
Antibodies, Monoclonal
;
Retrospective Studies
;
HLA Antigens
;
Hematopoietic Stem Cell Transplantation
10.Effect of Erjing Pills on alleviating neuroinflammation of AD rats based on TLR4/NF-κB/NLRP3 pathway and its mechanism.
Li-Ping HUANG ; Long-Hui LU ; Xi-Yang YANG ; Yong-Yan XIE ; Zi-Wei XU ; Xu-Dong ZHU ; Jing-Jing WANG ; Zhi-Xin WU ; Jian-Fu TANG ; Yi WU ; Yao-Hui CHEN
China Journal of Chinese Materia Medica 2023;48(3):770-777
This paper aimed to study the effect of Erjing Pills on the improvement of neuroinflammation of rats with Alzheimer's di-sease(AD) induced by the combination of D-galactose and Aβ_(25-35) and its mechanism. SD rats were randomly divided into a sham group, a model control group, a positive drug group(donepezil, 1 mg·kg~(-1)), an Erjing Pills high-dose group(9.0 g·kg~(-1)), and an Erjing Pills low-dose group(4.5 g·kg~(-1)), with 14 rats each group. To establish the rat model of AD, Erjing Pills were intragastrically administrated to rats for 5 weeks after 2 weeks of D-galactose injection. D-galactose was intraperitoneally injected into rats for 3 weeks, and then Aβ_(25-35) was injected into the bilateral hippocampus. The new object recognition test was used to evaluate the learning and memory ability of rats after 4 weeks of intragastric administration. Tissues were acquired 24 h after the last administration. The immunofluorescence method was used to detect the activation of microglia in the brain tissue of rats. The positive expressions of Aβ_(1-42) and phosphory protein Tau~(404)(p-Tau~(404)) in the CA1 area of the hippocampus were detected by immunohistochemistry. The levels of inflammatory factors interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) in the brain tissue were determined by enzyme-linked immunosorbent assay(ELISA). Toll-like receptor 4(TLR4)/nuclear factor kappa B(NF-κB)/nucleotide-binding oligomerization domain-like receptors 3(NLRP3) pathway-associated proteins in the brain tissue were determined by Western blot. The results showed that as compared with the sham group, the new object recognition index of rats in the model control group decreased significantly, the deposition of Aβ_(1-42) and p-Tau~(404) positive protein in the hippocampus increased significantly, and the levels of microglia activation increased significantly in the dentate gyrus. The levels of IL-1β, TNF-α, and IL-6 in the hippocampus of the model control group increased significantly, and the expression levels of TLR4, p-NF-κB p65/NF-κB p65, p-IκBα/IκBα, and NLRP3 proteins in the hippocampus increased significantly. Compared with the model control group, the Erjing Pill groups enhanced the new object recognition index of rats, decreased the deposition of Aβ_(1-42) and the expression of p-Tau~(404) positive protein in the hippocampus, inhibited the activation of microglia in the dentate gyrus, reduced the levels of inflammatory factors IL-1β, TNF-α, and IL-6 in the hippocampus, and down-regulated the expression levels of TLR4, p-NF-κB P65/NF-κB P65, p-IκBα/IκBα, and NLRP3 proteins in the hippocampus. In conclusion, Erjing Pills can improve the learning and memory ability of the rat model of AD presumably by improving the activation of microglia, reducing the expression levels of neuroinflammatory factors IL-1β, TNF-α, and IL-6, inhibiting the TLR4/NF-κB/NLRP3 neuroinflammation pathway, and decreasing hippocampal deposition of Aβ and expression of p-Tau, thereby restoring the hippocampal morphological structure.
Animals
;
Rats
;
Rats, Sprague-Dawley
;
NF-kappa B
;
NF-KappaB Inhibitor alpha
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Galactose
;
Interleukin-6
;
Neuroinflammatory Diseases
;
Toll-Like Receptor 4
;
Tumor Necrosis Factor-alpha

Result Analysis
Print
Save
E-mail