1. Spatiotemporal heterogeneity of schistosomiasis in mainland China: Evidence from a multi-stage continuous downscaling sentinel monitoring
Yanfeng GONG ; Jiaxin FENG ; Zhuowei LUO ; Jingbo XUE ; Zhaoyu GUO ; Lijuan ZHANG ; Shang XIA ; Shan LV ; Jing XU ; Shizhu LI ; Yanfeng GONG ; Jiaxin FENG ; Zhuowei LUO ; Jingbo XUE ; Zhaoyu GUO ; Lijuan ZHANG ; Shang XIA ; Shan LV ; Jing XU ; Shizhu LI ; Yanfeng GONG ; Jiaxin FENG ; Zhuowei LUO ; Jingbo XUE ; Zhaoyu GUO ; Lijuan ZHANG ; Shang XIA ; Shan LV ; Jing XU ; Shizhu LI ; Yanfeng GONG ; Jiaxin FENG ; Zhuowei LUO ; Jingbo XUE ; Zhaoyu GUO ; Lijuan ZHANG ; Shang XIA ; Shan LV ; Jing XU ; Shizhu LI ; Yanfeng GONG ; Jiaxin FENG ; Zhuowei LUO ; Jingbo XUE ; Zhaoyu GUO ; Lijuan ZHANG ; Shang XIA ; Shan LV ; Jing XU ; Shizhu LI ; Shang XIA ; Shan LV ; Shizhu LI
Asian Pacific Journal of Tropical Medicine 2022;15(1):26-34
Objective: To determine the spatiotemporal distribution of Schistosoma (S.) japonicum infections in humans, livestock, and Oncomelania (O.) hupensis across the endemic foci of China. Methods: Based on multi-stage continuous downscaling of sentinel monitoring, county-based schistosomiasis surveillance data were captured from the national schistosomiasis surveillance sites of China from 2005 to 2019. The data included S. japonicum infections in humans, livestock, and O. hupensis. The spatiotemporal trends for schistosomiasis were detected using a Joinpoint regression model, with a standard deviational ellipse (SDE) tool, which determined the central tendency and dispersion in the spatial distribution of schistosomiasis. Further, more spatiotemporal clusters of S. japonicum infections in humans, livestock, and O. hupensis were evaluated by the Poisson model. Results: The prevalence of S. japonicum human infections decreased from 2.06% to zero based on data of the national schistosomiasis surveillance sites of China from 2005 to 2019, with a reduction from 9.42% to zero for the prevalence of S. japonicum infections in livestock, and from 0.26% to zero for the prevalence of S. japonicum infections in O. hupensis. Analysis using an SDE tool showed that schistosomiasis-affected regions were reduced yearly from 2005 to 2014 in the endemic provinces of Hunan, Hubei, Jiangxi, and Anhui, as well as in the Poyang and Dongting Lake regions. Poisson model revealed 11 clusters of S. japonicum human infections, six clusters of S. japonicum infections in livestock, and nine clusters of S. japonicum infections in O. hupensis. The clusters of human infection were highly consistent with clusters of S. japonicum infections in livestock and O. hupensis. They were in the 5 provinces of Hunan, Hubei, Jiangxi, Anhui, and Jiangsu, as well as along the middle and lower reaches of the Yangtze River. Humans, livestock, and O. hupensis infections with S. japonicum were mainly concentrated in the north of the Hunan Province, south of the Hubei Province, north of the Jiangxi Province, and southwestern portion of Anhui Province. In the 2 mountainous provinces of Sichuan and Yunnan, human, livestock, and O. hupensis infections with S. japonicum were mainly concentrated in the northwestern portion of the Yunnan Province, the Daliangshan area in the south of Sichuan Province, and the hilly regions in the middle of Sichuan Province. Conclusions: A remarkable decline in the disease prevalence of S. japonicum infection was observed in endemic schistosomiasis in China between 2005 and 2019. However, there remains a long-term risk of transmission in local areas, with the highest-risk areas primarily in Poyang Lake and Dongting Lake regions, requiring to focus on vigilance against the rebound of the epidemic. Development of high-sensitivity detection methods and integrating the transmission links such as human and livestock infection, wild animal infection, and O. hupensis into the surveillance-response system will ensure the elimination of schistosomiasis in China by 2030.
2.Effect of Organophosphate-Solubilizing Bacteria on Photosynthesis, Physiology, and Biochemistry of Paris polyphylla var. yunnanensis
Zhuowei LI ; Liangzhong LUO ; Jiaqi LANG ; Mingyan YE ; Fuqiang YIN ; Jingjing ZHAO ; Nong ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2022;28(16):165-171
ObjectiveTo study the effect of organophosphate-solubilizing bacteria and compound bacteria on the photosynthesis and physiological and biochemical characteristics of leaves of Paris polyphylla var. yunnanensis, and to provide a reference for selecting suitable bacterial fertilizers in artificial cultivation of this medicinal species. MethodPot experiment was carried out indoor and the following groups were designed: control (CK), inoculation with Bacillus mycoides (S1), inoculation with B. wiedmannii (S2), inoculation with B. proteolyticus (S3), inoculation with B. mycoides and B. wiedmannii (S4), inoculation with B. mycoides and B. proteolyticus (S5), inoculation with B. wiedmannii and B. proteolyticus (S6), and inoculation with B. mycoides, B. wiedmannii and B. proteolyticus (S7). Then, the growth and development, photosynthesis, and various physiological and biochemical indexes of the leaves of this species were observed. ResultCompared with CK, the treatment groups showed decrease in content of malondialdehyde in the leaves (P<0.05), particularly S7 (content was only about 1/3 that of the CK). The leaf area, photosynthetic parameters, photosynthetic pigment content, soluble sugar content, soluble protein content, and activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in leaves of the treatment groups were all improved. Among them, the leaf area, soluble sugar content, and soluble protein content were the highest in S7, which were 2.8, 2.1, and 2.2 times that of the CK, respectively. SOD activity peaked in S6 (2.9 times higher than that in the CK) and the highest activity of POD and CAT was detected in S5 (1.5 times and 2.1 times, respectively higher than that in the CK). ConclusionInoculation with different organophosphate-solubilizing bacteria or compound bacteria can promote the growth and development of P. polyphylla var. yunnanensis and improve its resistance to stresses. The combination of B. mycoides and B. proteolyticus and the combination of the three achieved the have the best effect. This study provides a reference for the selection of bacterial fertilizers for artificial cultivation of P. polyphylla var. yunnanensis.
3.Construction of an evaluation index system for the capability of comprehensive control of mountain - type zoonotic visceral leishmaniasis based on the One Health concept
Jingshu LIU ; Zhengbin ZHOU ; Xiaoxi ZHANG ; Lulu HUANG ; Zhuowei LUO ; Shenglin CHEN ; Yi ZHANG ; Shizhu LI
Chinese Journal of Schistosomiasis Control 2023;35(6):545-556
Objective To construct an evaluation index system for the capability of comprehensive control of mountain-type zoonotic visceral leishmaniasis based on the One Health concept, so as to provide insights into the control and elimination of mountain-type zoonotic visceral leishmaniasis using the One Health approach. Methods A preliminary evaluation index system was constructed based on literature review, panel discussions and field surveys. Thirty-three experts were selected from 7 provincial disease control and prevention centers in Beijing Municipality, Hebei Province, Shanxi Province, Henan Province, Sichuan Province, Shaanxi Province and Gansu Province where mountain-type zoonotic visceral leishmaniasis was endemic, and two rounds of expert consultations were conducted to screen the indicators. The positive coefficient, degree of concentration, degree of coordination, and authority of the experts were calculated, and the normalized weights of each index were calculated with the analytic hierarchy process. Results The response rates of questionnaires during two rounds of expert consultation were both 100.00% (33/33), and the authority coefficients of the experts were 0.86 and 0.88, respectively. The coefficients of coordination among experts on the rationality, importance, and operability of the indicators were 0.392, 0.437, 0.258, and 0.364, 0.335, 0.263, respectively (all P values < 0.05). Following screening, the final evaluation index system included 3 primary indicators, 17 secondary indicators, and 50 tertiary indicators. The normalized weights of primary indicators “external environment”, “internal support” and “comprehensive control” were 16.98%, 38.73% and 44.29%, respectively. Among the secondary indicators of the primary indicator “external environment”, the highest weight was seen for natural environment (66.67%), and among the secondary indicators of the primary indicator “internal support”, the lowest weight was seen for the scientific research for visceral leishmaniasis control (8.26%), while other indicators had weights of 12.42% to 13.38%. Among the secondary indicators of the primary indicator “comprehensive control”, the weight was 16.67% for each indicator. Conclusions An evaluation index system has been constructed for the capability of comprehensive control of mountain-type zoonotic visceral leishmaniasis based on the One Health concept. In addition to assessment of the effect of conventional mountain-type zoonotic visceral leishmaniasis control measures, this index system integrates the importance of top-level design, organizational management, and implementation of control measures, and includes indicators related to multi-sectoral cooperation.