1.Inhibition of DNA-dependent protein kinase catalytic subunit by small molecule inhibitor NU7026 sensitizes human leukemic K562 cells to benzene metabolite-induced apoptosis.
Hao YOU ; Meng-meng KONG ; Li-ping WANG ; Xiao XIAO ; Han-lin LIAO ; Zhuo-yue BI ; Hong YAN ; Hong WANG ; Chun-hong WANG ; Qiang MA ; Yan-qun LIU ; Yong-yi BI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(1):43-50
Benzene is an established leukotoxin and leukemogen in humans. We have previously reported that exposure of workers to benzene and to benzene metabolite hydroquinone in cultured cells induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to mediate the cellular response to DNA double strand break (DSB) caused by DNA-damaging metabolites. In this study, we used a new, small molecule, a selective inhibitor of DNA-PKcs, 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026), as a probe to analyze the molecular events and pathways in hydroquinone-induced DNA DSB repair and apoptosis. Inhibition of DNA-PKcs by NU7026 markedly potentiated the apoptotic and growth inhibitory effects of hydroquinone in proerythroid leukemic K562 cells in a dose-dependent manner. Treatment with NU7026 did not alter the production of reactive oxygen species and oxidative stress by hydroquinone but repressed the protein level of DNA-PKcs and blocked the induction of the kinase mRNA and protein expression by hydroquinone. Moreover, hydroquinone increased the phosphorylation of Akt to activate Akt, whereas co-treatment with NU7026 prevented the activation of Akt by hydroquinone. Lastly, hydroquinone and NU7026 exhibited synergistic effects on promoting apoptosis by increasing the protein levels of pro-apoptotic proteins Bax and caspase-3 but decreasing the protein expression of anti-apoptotic protein Bcl-2. Taken together, the findings reveal a central role of DNA-PKcs in hydroquinone-induced hematotoxicity in which it coordinates DNA DSB repair, cell cycle progression, and apoptosis to regulate the response to hydroquinone-induced DNA damage.
Apoptosis
;
drug effects
;
physiology
;
Benzene
;
toxicity
;
Catalysis
;
Chromones
;
pharmacology
;
DNA Damage
;
drug effects
;
genetics
;
DNA Repair
;
drug effects
;
physiology
;
DNA-Activated Protein Kinase
;
antagonists & inhibitors
;
metabolism
;
Humans
;
K562 Cells
;
Morpholines
;
pharmacology
;
Protein Subunits