1.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.
2.Effect of Zuogui Jiangtang Jieyu Formula on hippocampal H3K18la modification in a rat model of diabetes mellitus complicated with depression and prediction of related regulatory genes
Hui YANG ; Wei LI ; Shihui LEI ; Jinxi WANG ; Zhuo LIU ; Pan MENG ; Lin LIU ; Fan JIANG ; Yuhong WANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(6):791-801
Objective:
To investigate the effects of Zuogui Jiangtang Jieyu Formula (ZGJTJYF) on histone H3 lysine 18 lactylation (H3K18la) in the hippocampus of rats with diabetes mellitus complicated with depression (DD) and predict the regulatory genes of H3K18la.
Methods:
Male Sprague-Dawley rats were divided into control, model, and positive drug (metformin [0.18 g/kg] and fluoxetine [1.8 mg/kg]) groups, and the three groups were treated with high, medium, and low ZGJTJYF doses (20.52, 10.26, and 5.13 g/kg, respectively), with 10 rats per group. After treatment, the forced swimming and water maze tests were performed to assess depressive-like behaviors and cognitive function. An enzyme-linked immunosorbent assay was used to measure blood insulin, glycosylated hemoglobin, lactate levels, and lactate content in the hippocampus. Western blotting was used to detect H3K18la expression in the hippocampus. Cleavage Under Targets and lagmentation(CUT&Tag) experiments targeted hippocampal H3K18la epigenetic modification regions to analyze the transcription factors bound by H3K18la. Kyoto Encyclopedia of Genes and Genomes and Protein-Protein Interaction networks were constructed to identify key pathways and target genes regulated by H3K18la.
Results:
Compared with the normal group, the model group rats showed prolonged immobility time in the forced swim test, increased escape latency in the water maze experiment, decreased target quadrant distance ratio (P<0.01), increased serum lactate content, and decreased lactate content in hippocampal homogenate (P<0.01), as well as decreased H3K18la protein expression in the hippocampus (P<0.01). Compared with the model group, ZGJTJYF reduced the immobility time in the forced swim test and the escape latency in the water maze test (P<0.01), while the distance ratio in the target quadrant increased (P<0.01) in model rats. Lowered fasting blood glucose, insulin, and glycosylated hemoglobin levels (P<0.05, P<0.01) were also observed. ZGJTJYF also increased the lactate content and H3K18la protein expression in hippocampal homogenate (P<0.05, P<0.01). The DNA sequences bound by H3K18la were predominantly enriched at the transcription start sites. ZGJTJYF modulated H3K18la-associated pathways, including cell adhesion junctions, tumor growth factor-beta (TGF-β) signaling, stem cell pluripotency regulation, mitogen-activated protein kinase(MAPK) signaling pathway, and insulin resistance, leading to the identification of 12 target genes.
Conclusion
ZGJTJYF enhances hippocampal lactate levels and H3K18la modification in DD rats, which may regulate neural cell interactions, neurogenic stem cell function, TGF-β signaling, MAPK signaling, and insulin resistance pathways.
3.Mechanism of Syngnathus extract in treating knee osteoarthritis of rats via regulating PI3K/Akt/mTOR signaling pathway.
Quan-Wei ZHENG ; Guo-Wei WANG ; Si-Xian WU ; Tao ZHUO ; Yi HE ; Jian-Hang LIU
China Journal of Chinese Materia Medica 2025;50(9):2442-2449
To investigate the mechanism of action of Syngnathus extract in treating knee osteoarthritis of rats, forty-eight male SD rats were randomly divided into the blank group, model group, positive drug group, as well as low-dose, medium-dose, and high-dose groups of Syngnathus extract. The rat model of knee osteoarthritis was constructed by intra-articular injection of sodium iodoacetate. After successful modeling, celecoxib(18 mg·kg~(-1)·d~(-1)) and Syngnathus extract(0.4, 0.8, and 1.6 g·kg~(-1)·d~(-1)) were given in different groups by gavage intervention for two weeks. Hematoxylin-eosin(HE) staining was used to observe the histopathological changes of cartilage in knee joints, and enzyme-linked immunosorbent assay(ELISA) was used to detect the expression level of inflammatory factors in serum. Real-time fluorescence quantitative PCR, Western blot, and immunohistochemistry were used to detect the levels of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target protein of rapamycin(mTOR) pathway-related mRNA and protein expression. The results showed that, comparied with the blank group, the cartilage surface of the knee joints of rats in the model group was uneven, with disorganized levels and defective cartilage tissue. The serum levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) and the mRNA levels of PI3K, Akt, and mTOR in cartilage tissue, as well as the protein expression levels of phosphorylated PI3K(p-PI3K)/PI3K, phosphorylated Akt(p-Akt)/Akt, phosphorylated mTOR(p-mTOR)/mTOR, and P62 were significantly increased. Beclin1 protein expression was decreased. Comparied with the model group, the number of chondrocytes in the knee joint of rats in each group of Syngnathus extract increased, and the arrangement of chondrocytes was relatively neat. The cartilage layer was restored, and the serum levels of IL-1β, IL-6, and TNF-α, as well as the mRNA expression levels of PI3K, Akt, and mTOR in cartilage tissue were significantly reduced. The protein expression levels of p-PI3K/PI3K, p-Akt/Akt, p-mTOR/mTOR, and P62 were significantly reduced in the rats in the middle-dose and high-dose groups of Syngnathus extract, and the Beclin1 protein expression was significantly increased. The protein expression levels of p-PI3K/PI3K, p-Akt/Akt, and P62 in rats in the low-dose group of Syngnathus extract were significantly reduced. In summary, Syngnathus extract may be used to treat knee osteoarthritis by inhibiting the expression of PI3K/Akt/mTOR signaling pathway, so as to alleviate the inflammatory response in the organism, enhance the autophagy activity of chondrocytes, and reduce the apoptosis of chondrocytes.
Animals
;
TOR Serine-Threonine Kinases/genetics*
;
Male
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Rats
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Humans
4.A new amide alkaloid from Cannabis Fructus.
Rui-Wen XU ; Yong-Zhuo ZHAO ; Yu-Guo MA ; Hui LIU ; Yan-Jun SUN ; Wei-Sheng FENG ; Hui CHEN
China Journal of Chinese Materia Medica 2025;50(11):3043-3048
Eight amide alkaloids(1-8) were isolated from the 70% ethanol extract of Cannabis Fructus using silica gel column chromatography, MCI column chromatography, and semi-preparative high-performance liquid chromatography(HPLC). Their structures were identified as hempspiramide A(1), N-[(4-hydroxyphenyl)ethyl]formamide(2), N-acetyltyramide(3), N-trans-p-coumaroyltyramine(4), N-trans-caffeoyltyramine(5), N-trans-feruloyltyramine(6), N-cis-p-coumaroyltyramine(7), N-cis-feruloyltyramine(8) by using spectroscopic methods such as NMR and MS. Among these compounds, compound 1 was a new amide alkaloid, while compounds 2 and 3 were isolated from Cannabis Fructus for the first time. Some of the isolates were assayed for their α-glucosidase inhibitory activity. Compounds 5-7 displayed significant inhibitory activity against α-glucosidase with IC_(50) values ranging from 1.07 to 4.63 μmol·L~(-1).
Cannabis/chemistry*
;
Alkaloids/pharmacology*
;
Amides/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
;
Fruit/chemistry*
;
Molecular Structure
;
alpha-Glucosidases/chemistry*
;
Chromatography, High Pressure Liquid
5.Mechanism of Hippocampus in treatment of knee osteoarthritis based on network pharmacology, molecular docking, and experimental verification.
Tao ZHUO ; Guo-Wei WANG ; Si-Xian WU ; Quan-Wei ZHENG ; Yi HE ; Jian-Hang LIU
China Journal of Chinese Materia Medica 2025;50(14):4026-4036
This study predicts the potential mechanism of Hippocampus in the treatment of knee osteoarthritis(KOA) through network pharmacology, with preliminary verification using molecular docking and animal experiments. The database was used to screen the active chemical components of Hippocampus and the targets of KOA, and Gene Ontology(GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and molecular docking were performed on the relevant core targets to preliminarily explore the potential targets and mechanisms of Hippocampus in the treatment of KOA. A rat KOA model was constructed by intra-articular injection of sodium iodoacetate, and the rats were intervened with different doses of Hippocampus decoction and celecoxib. The expression of relevant targets was detected through hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay(ELISA), RT-qPCR, and Western blot to further validate the network pharmacology results. A total of 23 drug-like components of the Hippocampus were screened, and 128 common targets with KOA were identified, involving interleukin-17(IL-17) signaling pathway, transcription factor(FoxO) signaling pathway, tumor necrosis factor(TNF) signaling pathway. Molecular docking results showed that the screened core chemical components exhibited good affinity with key targets. HE staining demonstrated that Hippocampus improved the morphology of the cartilage layer. ELISA confirmed that Hippocampus significantly reduced the levels of IL-6 and TNF-α in the serum of KOA rats. Western blot and RT-qPCR analysis showed that Hippocampus significantly reduced the expression of IL-6, TNF-α, matrix metalloproteinase(MMP) 13, IL-17A, nuclear factor κB activator 1(ACT1), tumor necrosis factor receptor-associated factor 6(TRAF6) and nuclear factor κB(NF-κB) in cartilage tissue. The results suggest that Hippocampus can alleviate the degree of joint damage in the KOA rat model induced by sodium iodoacetate. The mechanism of action is related to the inhibition of the IL-17 signaling pathway, reduction of inflammation, and inhibition of extracellular matrix(ECM) degradation.
Animals
;
Molecular Docking Simulation
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Network Pharmacology
;
Male
;
Osteoarthritis, Knee/metabolism*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Humans
;
Interleukin-17/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Hippocampus/chemistry*
6.Association between improved erectile function and dietary patterns: a systematic review and meta-analysis.
Bin YANG ; Chao WEI ; Yu-Cong ZHANG ; De-Lin MA ; Jian BAI ; Zhuo LIU ; Xia-Ming LIU ; Ji-Hong LIU ; Xiao-Yi YUAN ; Wei-Min YAO
Asian Journal of Andrology 2025;27(2):239-244
Erectile dysfunction (ED) is prevalent among men, but its relationship with dietary habits is uncertain. The aim of our study was to assess whether dietary patterns enhance erectile function by reviewing the literature published before August 1, 2022, via PubMed, Web of Science, and EMBASE databases. The data compiled included author details; publication dates, countries, treatments, patient numbers, ages, follow-ups, and clinical trial outcomes, such as ED cases, odds ratios (ORs), confidence intervals (CIs), and International Index of Erectile Function-5 (IIEF-5) scores with means and standard deviations. An analysis of 14 studies with 27 389 participants revealed that plant-based diets (OR = 0.71, 95% CI: 0.66-0.75; P < 0.00001), low-fat diets (OR = 0.27, 95% CI: 0.13-0.53; P = 0.0002), and alternative diets such as intermittent fasting and organic diets (OR = 0.54, 95% CI: 0.36-0.80; P = 0.002) significantly reduced ED risk. High-protein low-fat diets (hazard ratio [HR] = 1.38, 95% CI: 1.12-1.64; P < 0.00001) and high-carb low-fat diets (HR = 0.79, 95% CI: 0.55-1.04; P < 0.00001) improved IIEF-5 scores. Combined diet and exercise interventions decreased the likelihood of ED (OR = 0.49, 95% CI: 0.28-0.85; P = 0.01) and increased the IIEF-5 score (OR = 3.40, 95% CI: 1.69-5.11; P < 0.0001). Diets abundant in fruits and vegetables (OR = 0.97, 95% CI: 0.96-0.98; P < 0.00001) and nuts (OR = 0.54, 95% CI: 0.37-0.80; P = 0.002) were also correlated with lower ED risk. Our meta-analysis underscores a strong dietary-ED association, suggesting that low-fat/Mediterranean diets rich in produce and nuts could benefit ED management.
Humans
;
Male
;
Erectile Dysfunction/epidemiology*
;
Diet
;
Diet, Fat-Restricted
;
Feeding Behavior
;
Penile Erection/physiology*
;
Diet, Vegetarian
7.Zedoarondiol Inhibits Neovascularization in Atherosclerotic Plaques of ApoE-/- Mice by Reducing Platelet Exosomes-Derived MiR-let-7a.
Bei-Li XIE ; Bo-Ce SONG ; Ming-Wang LIU ; Wei WEN ; Yu-Xin YAN ; Meng-Jie GAO ; Lu-Lian JIANG ; Zhi-Die JIN ; Lin YANG ; Jian-Gang LIU ; Da-Zhuo SHI ; Fu-Hai ZHAO
Chinese journal of integrative medicine 2025;31(3):228-239
OBJECTIVE:
To investigate the effect of zedoarondiol on neovascularization of atherosclerotic (AS) plaque by exosomes experiment.
METHODS:
ApoE-/- mice were fed with high-fat diet to establish AS model and treated with high- and low-dose (10, 5 mg/kg daily) of zedoarondiol, respectively. After 14 weeks, the expressions of anti-angiogenic protein thrombospondin 1 (THBS-1) and its receptor CD36 in plaques, as well as platelet activation rate and exosome-derived miR-let-7a were detected. Then, zedoarondiol was used to intervene in platelets in vitro, and miR-let-7a was detected in platelet-derived exosomes (Pexo). Finally, human umbilical vein endothelial cells (HUVECs) were transfected with miR-let-7a mimics and treated with Pexo to observe the effect of miR-let-7a in Pexo on tube formation.
RESULTS:
Animal experiments showed that after treating with zedoarondiol, the neovascularization density in plaques of AS mice was significantly reduced, THBS-1 and CD36 increased, the platelet activation rate was markedly reduced, and the miR-let-7a level in Pexo was reduced (P<0.01). In vitro experiments, the platelet activation rate and miR-let-7a levels in Pexo were significantly reduced after zedoarondiol's intervention. Cell experiments showed that after Pexo's intervention, the tube length increased, and the transfection of miR-let-7a minics further increased the tube length of cells, while reducing the expressions of THBS-1 and CD36.
CONCLUSION
Zedoarondiol has the effect of inhibiting neovascularization within plaque in AS mice, and its mechanism may be potentially related to inhibiting platelet activation and reducing the Pexo-derived miRNA-let-7a level.
Animals
;
MicroRNAs/genetics*
;
Exosomes/drug effects*
;
Plaque, Atherosclerotic/genetics*
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
Blood Platelets/drug effects*
;
Apolipoproteins E/deficiency*
;
Thrombospondin 1/metabolism*
;
CD36 Antigens/metabolism*
;
Platelet Activation/drug effects*
;
Male
;
Mice
;
Mice, Inbred C57BL
8.A practice guideline for therapeutic drug monitoring of mycophenolic acid for solid organ transplants.
Shuang LIU ; Hongsheng CHEN ; Zaiwei SONG ; Qi GUO ; Xianglin ZHANG ; Bingyi SHI ; Suodi ZHAI ; Lingli ZHANG ; Liyan MIAO ; Liyan CUI ; Xiao CHEN ; Yalin DONG ; Weihong GE ; Xiaofei HOU ; Ling JIANG ; Long LIU ; Lihong LIU ; Maobai LIU ; Tao LIN ; Xiaoyang LU ; Lulin MA ; Changxi WANG ; Jianyong WU ; Wei WANG ; Zhuo WANG ; Ting XU ; Wujun XUE ; Bikui ZHANG ; Guanren ZHAO ; Jun ZHANG ; Limei ZHAO ; Qingchun ZHAO ; Xiaojian ZHANG ; Yi ZHANG ; Yu ZHANG ; Rongsheng ZHAO
Journal of Zhejiang University. Science. B 2025;26(9):897-914
Mycophenolic acid (MPA), the active moiety of both mycophenolate mofetil (MMF) and enteric-coated mycophenolate sodium (EC-MPS), serves as a primary immunosuppressant for maintaining solid organ transplants. Therapeutic drug monitoring (TDM) enhances treatment outcomes through tailored approaches. This study aimed to develop an evidence-based guideline for MPA TDM, facilitating its rational application in clinical settings. The guideline plan was drawn from the Institute of Medicine and World Health Organization (WHO) guidelines. Using the Delphi method, clinical questions and outcome indicators were generated. Systematic reviews, Grading of Recommendations Assessment, Development, and Evaluation (GRADE) evidence quality evaluations, expert opinions, and patient values guided evidence-based suggestions for the guideline. External reviews further refined the recommendations. The guideline for the TDM of MPA (IPGRP-2020CN099) consists of four sections and 16 recommendations encompassing target populations, monitoring strategies, dosage regimens, and influencing factors. High-risk populations, timing of TDM, area under the curve (AUC) versus trough concentration (C0), target concentration ranges, monitoring frequency, and analytical methods are addressed. Formulation-specific recommendations, initial dosage regimens, populations with unique considerations, pharmacokinetic-informed dosing, body weight factors, pharmacogenetics, and drug-drug interactions are covered. The evidence-based guideline offers a comprehensive recommendation for solid organ transplant recipients undergoing MPA therapy, promoting standardization of MPA TDM, and enhancing treatment efficacy and safety.
Mycophenolic Acid/administration & dosage*
;
Drug Monitoring/methods*
;
Humans
;
Organ Transplantation
;
Immunosuppressive Agents/administration & dosage*
;
Delphi Technique
9.eIF3a function in immunity and protection against severe sepsis by regulating B cell quantity and function through m6A modification.
Qianying OUYANG ; Jiajia CUI ; Yang WANG ; Ke LIU ; Yan ZHAN ; Wei ZHUO ; Juan CHEN ; Honghao ZHOU ; Chenhui LUO ; Jianming XIA ; Liansheng WANG ; Chengxian GUO ; Jianting ZHANG ; Zhaoqian LIU ; Jiye YIN
Acta Pharmaceutica Sinica B 2025;15(3):1571-1588
eIF3a is a N 6-methyladenosine (m6A) reader that regulates mRNA translation by recognizing m6A modifications of these mRNAs. It has been suggested that eIF3a may play an important role in regulating translation initiation via m6A during infection when canonical cap-dependent initiation is inhibited. However, the death of animal model studies impedes our understanding of the functional significance of eIF3a in immunity and regulation in vivo. In this study, we investigated the in vivo function of eIF3a using eIF3a knockout and knockdown mouse models and found that eIF3a deficiency resulted in splenic tissue structural disruption and multi-organ damage, which contributed to severe sepsis induced by Lipopolysaccharide (LPS). Ectopic eIF3a overexpression in the eIF3a knockdown mice rescued mice from LPS-induced severe sepsis. We further showed that eIF3a maintains a functional and healthy immune system by regulating B cell function and quantity through m6A modification of mRNAs. These findings unveil a novel mechanism underlying sepsis, implicating the pivotal role of B cells in this complex disease process regulated by eIF3a. Furthermore, eIF3a may be used to develop a potential strategy for treating sepsis.
10.Exploring the mechanism of Xiaoaiping Injection inhibiting autophagy in prostate cancer based on proteomics.
Qiuping ZHANG ; Qiuju HUANG ; Zhiping CHENG ; Wei XUE ; Shoushi LIU ; Yunnuo LIAO ; Xiaolan LI ; Xin CHEN ; Yaoyao HAN ; Dan ZHU ; Zhiheng SU ; Xin YANG ; Zhuo LUO ; Hongwei GUO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):64-76
Xiaoaiping (XAP) Injection demonstrates the anti-prostate cancer (PCa) effects, yet the underlying mechanism remains unclear. This study aims to investigate the impact of XAP on PCa and elucidate its mechanism of action. PCa cell proliferation was evaluated using a cell counting kit-8 (CCK-8) assay. Cell apoptosis was assessed through Hoechst staining and Western blotting assays. Proteomics technology was employed to identify key molecules and significant signaling pathways modulated by XAP in PCa cells. To further validate potential key genes and important pathways, a series of assays were conducted, including acridine orange (AO) staining, transmission electron microscopy, and immunofluorescence assays. The molecular mechanism of XAP against PCa in vivo was examined using a PC3 xenograft mouse model. Results demonstrated that XAP significantly inhibited cell proliferation in multiple PCa cell lines. In C4-2 and prostate cancer cell line-3 (PC3) cells, XAP induced cellular apoptosis, evidenced by reduced B-cell lymphoma 2 (Bcl-2) levels and elevated Bcl-2-associated X (Bax) levels. Proteomic, immunofluorescence, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) investigations revealed a strong correlation between forkhead box O3a (FoxO3a) autophagic degradation and the anti-PCa action of XAP. XAP hindered autophagy by reducing the expression levels of autophagy-related protein 5 (Atg5)/autophagy-related protein 12 (Atg12) and enhancing FoxO3a expression and nuclear translocation. Furthermore, XAP exhibited potent anti-PCa action in PC3 xenograft mice and triggered FoxO3a nuclear translocation in tumor tissue. These findings suggest that XAP induces PCa apoptosis via inhibition of FoxO3a autophagic degradation, potentially offering a novel perspective on XAP injection as an effective anticancer therapy for PCa.
Male
;
Humans
;
Prostatic Neoplasms/physiopathology*
;
Autophagy/drug effects*
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Proteomics
;
Mice
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Forkhead Box Protein O3/genetics*
;
Xenograft Model Antitumor Assays
;
Mice, Nude
;
Mice, Inbred BALB C


Result Analysis
Print
Save
E-mail