1.Do neuroimaging results impact prognosis of epilepsy surgery? A meta-analysis.
Zhuo-ran YIN ; Hui-cong KANG ; Wei WU ; Min WANG ; Sui-qiang ZHU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(2):159-165
The neuroimaging results of drug-resistant epilepsy patients play an important role in the surgery decision and prognosis. The aim of this study was to evaluate the impact of these results on the efficacy of epilepay surgery, and then to explore surgical benefit for epilepsy patients with negative magnetic resonance (MR) images. Twenty-four subgroups describing the outcomes of 1475 epilepsy patients with positive-neuroimaging results and 696 patients with negative-neuroimaging results were involved in the meta-analysis. Overall, the odds of postoperational seizure-free rate were 2.03 times higher in magnetic resonance imaging-positive (MRI-positive) patients than in MRI-negative patients [odds ratio (OR)=2.03, 95% CI (1.67, 2.47), P<0.00001]. For patients with temporal lobe epilepsy (TLE), the odds were 1.76 times higher in those with MRI-positive results than in those with MRI-negative results [OR=1.76, 95% CI (1.34, 2.32), P<0.0001]. For patients with extra-temporal lobe epilepsy (extra-TLE), the odds were 2.88 times higher in MRI-positive patients than in MRI-negative patients [OR=2.88, 95% CI (1.53, 5.43), P=0.001]. It was concluded that the seizure-free rate of MRI-positive patients after surgery was higher than that of MRI-negative patients. For patients with negative results, an appropriate surgery should be concerned for TLE.
China
;
epidemiology
;
Epilepsy
;
diagnosis
;
epidemiology
;
surgery
;
Humans
;
Magnetic Resonance Imaging
;
statistics & numerical data
;
Neurosurgical Procedures
;
statistics & numerical data
;
Prevalence
;
Prognosis
;
Reproducibility of Results
;
Sensitivity and Specificity
;
Surgery, Computer-Assisted
;
statistics & numerical data
;
Treatment Outcome
2.Molecular mechanism of ligustilide attenuating OGD/R injury in PC12 cells by inhibiting ferroptosis.
Lei SHI ; Chen-Chen JIANG ; Jia-Jun LU ; Zi-Xu LI ; Wang-Jie LI ; Xiu-Yun YIN ; Zhuo CHEN ; Xin-Ya ZHAO ; Hui ZHANG ; Hao-Ran HU ; Lu-Tan ZHOU ; Jun HAN
China Journal of Chinese Materia Medica 2023;48(11):3046-3054
The aim of this study is to explore the mechanism of ligustilide, the main active constituent of essential oils of traditional Chinese medicine Angelicae Sinensis Radix, on alleviating oxygen-glucose deprivation/reperfusion(OGD/R) injury in PC12 cells from the perspective of ferroptosis. OGD/R was induced in vitro, and 12 h after ligustilide addition during reperfusion, cell viability was detected by cell counting kit-8(CCK-8) assay. DCFH-DA staining was used to detect the level of intracellular reactive oxygen species(ROS). Western blot was employed to detect the expression of ferroptosis-related proteins, glutathione peroxidase 4(GPX4), transferrin receptor 1(TFR1), and solute carrier family 7 member 11(SLC7A11), and ferritinophagy-related proteins, nuclear receptor coactivator 4(NCOA4), ferritin heavy chain 1(FTH1), and microtubule-associated protein 1 light chain 3(LC3). The fluorescence intensity of LC3 protein was analyzed by immunofluorescence staining. The content of glutathione(GSH), malondialdehyde(MDA), and Fe was detected by chemiluminescent immunoassay. The effect of ligustilide on ferroptosis was observed by overexpression of NCOA4 gene. The results showed that ligustilide increased the viability of PC12 cells damaged by OGD/R, inhibited the release of ROS, reduced the content of Fe and MDA and the expression of TFR1, NCOA4, and LC3, and improved the content of GSH and the expression of GPX4, SLC7A11, and FTH1 compared with OGD/R group. After overexpression of the key protein NCOA4 in ferritinophagy, the inhibitory effect of ligustilide on ferroptosis was partially reversed, indicating that ligustilide may alleviate OGD/R injury of PC12 cells by blocking ferritinophagy and then inhibiting ferroptosis. The mechanism by which ligustilide reduced OGD/R injury in PC12 cells is that it suppressed the ferroptosis involved in ferritinophagy.
Animals
;
Rats
;
PC12 Cells
;
Ferroptosis/genetics*
;
Reactive Oxygen Species
;
Transcription Factors
;
Glutathione