1.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.
2.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
3.Exploring the mechanism of Xiaoaiping Injection inhibiting autophagy in prostate cancer based on proteomics.
Qiuping ZHANG ; Qiuju HUANG ; Zhiping CHENG ; Wei XUE ; Shoushi LIU ; Yunnuo LIAO ; Xiaolan LI ; Xin CHEN ; Yaoyao HAN ; Dan ZHU ; Zhiheng SU ; Xin YANG ; Zhuo LUO ; Hongwei GUO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):64-76
Xiaoaiping (XAP) Injection demonstrates the anti-prostate cancer (PCa) effects, yet the underlying mechanism remains unclear. This study aims to investigate the impact of XAP on PCa and elucidate its mechanism of action. PCa cell proliferation was evaluated using a cell counting kit-8 (CCK-8) assay. Cell apoptosis was assessed through Hoechst staining and Western blotting assays. Proteomics technology was employed to identify key molecules and significant signaling pathways modulated by XAP in PCa cells. To further validate potential key genes and important pathways, a series of assays were conducted, including acridine orange (AO) staining, transmission electron microscopy, and immunofluorescence assays. The molecular mechanism of XAP against PCa in vivo was examined using a PC3 xenograft mouse model. Results demonstrated that XAP significantly inhibited cell proliferation in multiple PCa cell lines. In C4-2 and prostate cancer cell line-3 (PC3) cells, XAP induced cellular apoptosis, evidenced by reduced B-cell lymphoma 2 (Bcl-2) levels and elevated Bcl-2-associated X (Bax) levels. Proteomic, immunofluorescence, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) investigations revealed a strong correlation between forkhead box O3a (FoxO3a) autophagic degradation and the anti-PCa action of XAP. XAP hindered autophagy by reducing the expression levels of autophagy-related protein 5 (Atg5)/autophagy-related protein 12 (Atg12) and enhancing FoxO3a expression and nuclear translocation. Furthermore, XAP exhibited potent anti-PCa action in PC3 xenograft mice and triggered FoxO3a nuclear translocation in tumor tissue. These findings suggest that XAP induces PCa apoptosis via inhibition of FoxO3a autophagic degradation, potentially offering a novel perspective on XAP injection as an effective anticancer therapy for PCa.
Male
;
Humans
;
Prostatic Neoplasms/physiopathology*
;
Autophagy/drug effects*
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Proteomics
;
Mice
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Forkhead Box Protein O3/genetics*
;
Xenograft Model Antitumor Assays
;
Mice, Nude
;
Mice, Inbred BALB C
4.Discovery of a normal-tension glaucoma-suspect rhesus macaque with craniocerebral injury: Hints of elevated translaminar cribrosa pressure difference.
Jian WU ; Qi ZHANG ; Xu JIA ; Yingting ZHU ; Zhidong LI ; Shu TU ; Ling ZHAO ; Yifan DU ; Wei LIU ; Jiaoyan REN ; Liangzhi XU ; Hanxiang YU ; Fagao LUO ; Wenru SU ; Ningli WANG ; Yehong ZHUO
Chinese Medical Journal 2024;137(4):484-486
5.Study on the Characteristics of Gut Flora Related to Dampness Syndrome in Population at Risk of Cerebrovascular Disease and Their Influencing Factors
Hai-Yan HUANG ; Zhuo-Ran KUANG ; Xiao-Jia NI ; Qing SU ; Miao-Miao MENG ; Xiao-Bo YANG ; Ye-Feng CAI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2636-2647
Objective To investigate the characteristics of gut flora related to dampness syndrome in the population at risk of cerebrovascular disease and to explore their influencing factors.Methods Based on the results of epidemiological investigation of damp syndrome in at-risk population of cerebrovascular disease in Guangdong from October 2021 to February 2023,60 subjects(including 41 at-risk cases of cerebrovascular disease and 19 healthy controls)were included in the study.The identification of dampness syndrome and the risk rating of stroke were carried out for the subjects,and fecal samples were collected.High-throughput 16S rRNA sequencing technology and bioinformatics methods were used to analyze the characteristics of gut flora.Results(1)A total of 53 cases(88.33%)were identified as dampness syndrome.There was significant difference in the quantitative score of dampness syndrome between the risk group and the healthy group,and between the low-,medium-and high-risk groups(P=0.016;P=0.041).(2)There was no statistical difference in the species and abundance of gut flora between the dampness syndrome group and the non-dampness syndrome group.(3)In the population identified as dampness syndrome,there was no significant difference in Alpha diversity between the healthy group and the risk group,but there was significant difference in Beta diversity analysis;LEfSe analysis found that Fusobacterium and Lactobacillus were enriched in the risk group;correlation analysis showed that the differential bacteria were related to the three risk factors of diabetes,dyslipidemia and obesity and carotid intima-media thickness(IMT).(4)In the population identified as dampness syndrome and having the risk of cerebrovascular disease,there was no significant difference in Alpha diversity among three groups with different levels of risks,while significant difference in Beta diversity was observed;LEfSe analysis showed that Acidaminococcaceae,Phascolarctobacterium and Butyricimonas were enriched in the low-risk group,Veillonellaceae was enriched in the medium-risk group,and Ruminococcus 2 and Alloprevotella were enriched in the high-risk group;correlation analysis showed that the differential bacteria were associated with high-density lipoprotein cholesterol(HDL-C),low-density lipoprotein cholesterol(LDL-C),white blood cell count(WBC),and neutrophil count(NEUT).Conclusion In the Guangdong population predominated by dampness syndrome,the severity of dampness syndrome is related to the risk of stroke,and the specific flora associated with sub-clinical atherosclerosis,inflammatory response and lipid metabolism are presented.
6.Influence of Methylenetetrahydrofolate Reductase C677T Polymorphism on High-Dose Methotrexate Toxicity in Pediatric Mature B-cell lymphoma Patients
Jia-Qian XU ; Juan WANG ; Su-Ying LU ; Yan-Peng WU ; Lan-Ying GUO ; Bo-Yun SHI ; Fei-Fei SUN ; Jun-Ting HUANG ; Jia ZHU ; Zi-Jun ZHEN ; Xiao-Fei SUN ; Yi-Zhuo ZHANG
Journal of Experimental Hematology 2024;32(6):1733-1737
Objective:To investigate the effect of genetic polymorphism of MTHFR C677T (rs1801133) on methotrexate (MTX) related toxicity in pediatric mature B-cell lymphoma patients. Methods:Fifty-eight intermediate and high risk patients under 18 years of age with mature B-cell lymphoma who received 5 g/m2 MTX (24 h intravenous infusion) in Sun Yat-sen University Cancer Center from August 2014 to December 2021 were included,and their toxicity of high-dose MTX (HD-MTX) were monitored and analyzed. Results:Among the 58 pediatric patients,the number of CC,CT,and TT genotypes for MTHFR C677T was 33,19 and 6,respectively. A total of 101 courses of HD-MTX therapy were counted,of which plasma MTX level>0.2 μmol/L at 48 h post-MTX infusion were observed in 35 courses,≤0.2 μmol/L in 66 courses. Inter-group comparison showed that plasma MTX level>0.2 μmol/L at 48 h post-MTX infusion increased the risk of developing oral mucositis (P<0.05). Compared with wild-type (CC genotype),patients in the mutant group (CT+TT genotype) were more likely to develop myelosuppression,manifested as anemia,leucopenia,neutropenia and thrombocytopenia. However,plasma MTX level at 48 h was not associated with MTHFR C677T gene polymorphism. Conclusion:The risk of developing oral mucositis in children with mature B-cell lymphoma is associated with plasma MTX concentration. Polymorphism of MTHFR C677T gene is not related to plasma MTX concentration in children with mature B-cell lymphoma,but is related to grade Ⅲ to Ⅳ hematological toxicity.
7.Epidemiological Investigation of Dampness Syndrome Manifestations in the Population at Risk of Cerebrovascular Disease
Xiao-Jia NI ; Hai-Yan HUANG ; Qing SU ; Yao XU ; Ling-Ling LIU ; Zhuo-Ran KUANG ; Yi-Hang LI ; Yi-Kai ZHANG ; Miao-Miao MENG ; Yi-Xin GUO ; Xiao-Bo YANG ; Ye-Feng CAI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):531-539
Objective To make an epidemiological investigation on traditional Chinese medicine(TCM)dampness syndrome manifestations in the population at risk of cerebrovascular diseases in Guangdong area.Methods A cross-sectional study was conducted to analyze the clinical data related to the risk of cerebrovascular diseases in 330 Guangdong permanent residents.The diagnosis of dampness syndrome,quantitative scoring of dampness syndrome and rating of the risk of stroke were performed for the investigation of the distribution pattern of dampness syndrome and its influencing factors.Results(1)A total of 306(92.73%)study subjects were diagnosed as dampness syndrome.The percentage of dampness syndrome in the risk group was 93.82%(258/275),which was slightly higher than that of the healthy group(48/55,87.27%),but the difference was not statistically significant(χ2 = 2.91,P = 0.112).The quantitative score of dampness syndrome in the risk group was higher than that of the healthy group,and the difference was statistically significance(Z =-2.24,P = 0.025).(2)Among the study subjects at risk of cerebrovascular disease,evaluation time(χ2 = 26.11,P = 0.001),stroke risk grading(χ2= 8.85,P = 0.031),and history of stroke or transient ischemic attack(TIA)(χ2 = 9.28,P = 0.015)were the factors influencing the grading of dampness syndrome in the population at risk of cerebrovascular disease.Conclusion Dampness syndrome is the common TCM syndrome in the population of Guangdong area.The manifestations of dampness syndrome are more obvious in the population with risk factors of cerebrovascular disease,especially in the population at high risk of stroke,and in the population with a history of stroke or TIA.The assessment and intervention of dampness syndrome should be taken into account for future project of stroke prevention in Guangdong.
8.Interventional Treatment of Muscular Ventricular Septal Defect in Children
Wei HU ; Jinnan LI ; Wei YANG ; Li SU ; Zhuo YU ; Zhisong CHEN
Journal of Kunming Medical University 2024;45(3):48-53
Objects To explore the effectiveness and safety of using the Cardio-O-Fix Plug occluder in the treatment of muscular ventricular septal defect(mVSD)in children.Methods 14 patients with mVSD were taken to the cardiology department of First Affiliated Hospital of Kunming Medical University from July 2015 to June 2021 as research subjects.They were divided into two groups:14 children who received Cardi-O-Fix Plug occluder as the experimental group,and 10 children who received Cardi-O-O-Fix mVSD occluder as the control group.Electrocardiogram and transthoracic echocardiography were used to evaluate the occlusive efficacy and incidence of complications 1 day after surgery and 1 month,3 months,and 6 months of follow-up.Results Among the 24 pediatric patients,22 cases were successfully occluded,and 2 cases were unsuccessful(1 in the experi-mental group and 1 in the control group).The success rate of the experimental group was 92.8%(13/14),while the success rate of the control group was 90.0%(9/10).The average surgical duration of the experimental group was(71.93±14.85)minutes,while the average surgical duration of the control group was(90.70±19.78)minutes.There was a significant statistical difference between the two groups(P<0.05).Both the experimental group and the control group did not experience serious complications during surgery and follow-up.There was no significant difference in cardiac ultrasound indicators(including left ventricular ejection fraction,left ventricular end-diastolic diameter,and pulmonary artery pressure)between the two groups at different time points(P>0.05).Conclusion Trans-catheter closure of mVSD using Cardi-O-Fix Plug occluder in children is both safe and effective.The incidence of arrhythmia is low in the short,medium and long term.
9.Expert consensus on clinical application of 177Lu-prostate specific membrane antigen radio-ligand therapy in prostate cancer
Guobing LIU ; Weihai ZHUO ; Yushen GU ; Zhi YANG ; Yue CHEN ; Wei FAN ; Jianming GUO ; Jian TAN ; Xiaohua ZHU ; Li HUO ; Xiaoli LAN ; Biao LI ; Weibing MIAO ; Shaoli SONG ; Hao XU ; Rong TIAN ; Quanyong LUO ; Feng WANG ; Xuemei WANG ; Aimin YANG ; Dong DAI ; Zhiyong DENG ; Jinhua ZHAO ; Xiaoliang CHEN ; Yan FAN ; Zairong GAO ; Xingmin HAN ; Ningyi JIANG ; Anren KUANG ; Yansong LIN ; Fugeng LIU ; Cen LOU ; Xinhui SU ; Lijun TANG ; Hui WANG ; Xinlu WANG ; Fuzhou YANG ; Hui YANG ; Xinming ZHAO ; Bo YANG ; Xiaodong HUANG ; Jiliang CHEN ; Sijin LI ; Jing WANG ; Yaming LI ; Hongcheng SHI
Chinese Journal of Clinical Medicine 2024;31(5):844-850,封3
177Lu-prostate specific membrane antigen(PSMA)radio-ligand therapy has been approved abroad for advanced prostate cancer and has been in several clinical trials in China.Based on domestic clinical practice and experimental data and referred to international experience and viewpoints,the expert group forms a consensus on the clinical application of 177Lu-PSMA radio-ligand therapy in prostate cancer to guide clinical practice.
10.Study on the mechanism of Yifei xuanfei jiangzhuo formula against vascular dementia
Guifeng ZHUO ; Wei CHEN ; Jinzhi ZHANG ; Deqing HUANG ; Bingmao YUAN ; Shanshan PU ; Xiaomin ZHU ; Naibin LIAO ; Mingyang SU ; Xiangyi CHEN ; Yulan FU ; Lin WU
China Pharmacy 2024;35(18):2207-2212
OBJECTIVE To investigate the mechanism of Yifei xuanfei jiangzhuo formula (YFXF) against vascular dementia (VD). METHODS The differentially expressed genes of YFXF (YDEGs) were obtained by network pharmacology. High-risk genes were screened from YDEGs by using the nomogram model. The optimal machine learning models in generalized linear, support vector machine, extreme gradient boosting and random forest models were screened based on high-risk genes. VD model rats were established by bilateral common carotid artery occlusion, and were randomly divided into model group and YFXF group (12.18 g/kg, by the total amount of crude drugs), and sham operation group was established additionally, with 6 rats in each group. The effects of YFXF on behavior (using escape latency and times of crossing platform as indexes), histopathologic changes of cerebral cortex, and the expression of proteins related to the secreted phosphoprotein 1 (SPP1)/phosphoinositide 3-kinase (PI3K)/protein kinase B (aka Akt) signaling pathway and the mRNA expression of SPP1 in cerebral cortex of VD rats were evaluated. RESULTS A total of 6 YDEGs were obtained, among which SPP1, CCL2, HMOX1 and HSPB1 may be high-risk genes of VD. The generalized linear model based on high-risk genes had the highest prediction accuracy (area under the curve of 0.954). Compared with the model group, YFXF could significantly shorten the escape latency of VD rats, significantly increase the times of crossing platform (P<0.05); improve the pathological damage of cerebral cortex, such as neuronal shrinkage and neuronal necrosis; significantly reduce the expressions of SPP1 protein and mRNA (P<0.05), while significantly increase the phosphorylation levels of PI3K and Akt (P<0.05). CONCLUSIONS VD high-risk genes SPP1, CCL2, HMOX1 and HSPB1 may be the important targets of YFXF. YFXF may play an anti-VD role by down-regulating the protein and mRNA expressions of SPP1 and activating PI3K/Akt signaling pathway.

Result Analysis
Print
Save
E-mail