1.Synthesis and property of nano-fumed silica derivative with quaternary ammonium group.
Xia XU ; Jinan ZHAO ; Zhengjun LI ; Fang LIN ; Zhuangzhi HE ; Tingyou ZHANG
Journal of Biomedical Engineering 2006;23(2):362-365
Nano-fumed silica derivative with quaternary ammonium group was synthesized and the antimicrobial activity was investigated. The nano-fumed silica derivative was investigated by Fourier-transform infrared spectroscopy (FTIR). The zeta potential and the size of the nano-fumed silica derivative were measured. The antimicrobial properties of the nano-fumed silica derivative against selected microorganisms were tested by the quantitative suspension method. The zeta potential showed that the isoelectric points of nano-fumed silica and modified nano-fumed silica are pH=4. 8 and pH =10.5-10.8, respectively, and the shift of the isoelectric point is due to the quaternary ammonium salt. The obtained nano-fumed silica derivative inhibited the growth of Gram-negative (Escherichia coli), Gram-positive bacteria (Staphylococcus aureus), and fungus (Candida albicans). The inhibiting effect of nano-fumed silica derivative on the microorganisms varied with the time of exposure. The bacteriostatic rates were noted to be 99.99%, 99.99% and 94.12% after 15 minutes' exposure, respectively. Thus the results indicate that nano-fumed silica derivative with quaternary ammonium group has significant inhibitory effect on the growth of bacteria.
Anti-Infective Agents
;
pharmacology
;
Escherichia coli
;
drug effects
;
Fungi
;
drug effects
;
Nanotechnology
;
Quaternary Ammonium Compounds
;
chemistry
;
Silicon Dioxide
;
chemistry
;
Spectroscopy, Fourier Transform Infrared
;
Staphylococcus aureus
;
drug effects
;
Surface Properties
2. Decoding Cortical Glial Cell Development
Xiaosu LI ; Guoping LIU ; Lin YANG ; Zhenmeiyu LI ; Zhuangzhi ZHANG ; Zhejun XU ; Yuqun CAI ; Heng DU ; Zihao SU ; Ziwu WANG ; Yangyang DUAN ; Haotian CHEN ; Zicong SHANG ; Yan YOU ; Qi ZHANG ; Miao HE ; Zhengang YANG ; Bin CHEN
Neuroscience Bulletin 2021;37(4):440-460
Mouse cortical radial glial cells (RGCs) are primary neural stem cells that give rise to cortical oligodendrocytes, astrocytes, and olfactory bulb (OB) GABAergic interneurons in late embryogenesis. There are fundamental gaps in understanding how these diverse cell subtypes are generated. Here, by combining single-cell RNA-Seq with intersectional lineage analyses, we show that beginning at around E16.5, neocortical RGCs start to generate ASCL1