1.Telomere regulation in pluripotent stem cells.
Yan HUANG ; Puping LIANG ; Dan LIU ; Junjiu HUANG ; Zhou SONGYANG
Protein & Cell 2014;5(3):194-202
Pluripotent stem cells (PSCs) have the potential to produce any types of cells from all three basic germ layers and the capacity to self-renew and proliferate indefinitely in vitro. The two main types of PSCs, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), share common features such as colony morphology, high expression of Oct4 and Nanog, and strong alkaline phosphatase activity. In recent years, increasing evidences suggest that telomere length represents another important internal factor in maintaining stem cell pluripotency. Telomere length homeostasis and its structural integrity help to protect chromosome ends from recombination, end fusion, and DNA damage responses, ensuring the divisional ability of mammalian cells. PSCs generally exhibit high telomerase activity to maintain their extremely long and stable telomeres, and emerging data indicate the alternative lengthening of telomeres (ALT) pathway may play an important role in telomere functions too. Such characteristics are likely key to their abilities to differentiate into diverse cell types in vivo. In this review, we will focus on the function and regulation of telomeres in ESCs and iPSCs, thereby shedding light on the importance of telomere length to pluripotency and the mechanisms that regulate telomeres in PSCs.
Animals
;
Humans
;
Models, Biological
;
Pluripotent Stem Cells
;
metabolism
;
Telomerase
;
metabolism
;
Telomere
;
metabolism
;
Telomere Homeostasis
2.A tribute to Professor Yong Zhao.
Zheng TAN ; Jun TANG ; Feng WANG ; Xiaocui LI ; Yanlian CHEN ; Zhou SONGYANG
Protein & Cell 2022;13(1):1-3
3.Clinical features of hereditary leiomyomatosis and renal cell carcinoma syndrome-associated renal cell carcinoma: a multi-center real-world retrospective study
Yunze XU ; Wen KONG ; Ming CAO ; Guangxi SUN ; Jinge ZHAO ; Songyang LIU ; Zhiling ZHANG ; Liru HE ; Xiaoqun YANG ; Haizhou ZHANG ; Lieyu XU ; Yanfei YU ; Hang WANG ; Honggang QI ; Tianyuan XU ; Bo YANG ; Yichu YUAN ; Dongning CHEN ; Dengqiang LIN ; Fangjian ZHOU ; Qiang WEI ; Wei XUE ; Xin MA ; Pei DONG ; Hao ZENG ; Jin ZHANG
Chinese Journal of Urology 2024;45(3):161-167
Objective:To investigate the clinical features and therapeutic efficacy of patients with hereditary leiomyomatosis and renal cell carcinoma(RCC) syndrome-associated RCC (HLRCC-RCC) in China.Methods:The clinical data of 119 HLRCC-RCC patients with fumarate hydratase (FH) germline mutation confirmed by genetic diagnosis from 15 medical centers nationwide from January 2008 to December 2021 were retrospectively analyzed. Among them, 73 were male and 46 were female. The median age was 38(13, 74) years. The median tumor diameter was 6.5 (1.0, 20.5) cm. There were 38 cases (31.9%) in stage Ⅰ-Ⅱand 81 cases (68.1%) in stage Ⅲ-Ⅳ. In this group, only 11 of 119 HLRCC-RCC patients presented with skin smooth muscle tumors, and 44 of 46 female HLRCC-RCC patients had a history of uterine fibroids. The pathological characteristics, treatment methods, prognosis and survival of the patients were summarized.Results:A total of 86 patients underwent surgical treatment, including 70 cases of radical nephrectomy, 5 cases of partial nephrectomy, and 11 cases of reductive nephrectomy. The other 33 patients with newly diagnosed metastasis underwent renal puncture biopsy. The results of genetic testing showed that 94 patients had FH gene point mutation, 18 had FH gene insertion/deletion mutation, 4 had FH gene splicing mutation, 2 had FH gene large fragment deletion and 1 had FH gene copy number mutation. Immunohistochemical staining showed strong 2-succinocysteine (2-SC) positive and FH negative in 113 patients. A total of 102 patients received systematic treatment, including 44 newly diagnosed patients with metastasis and 58 patients with postoperative metastasis. Among them, 33 patients were treated with tyrosine kinase inhibitor (TKI) combined with immune checkpoint inhibitor (ICI), 8 patients were treated with bevacizumab combined with erlotinib, and 61 patients were treated with TKI monotherapy. Survival analysis showed that the median progression-free survival (PFS) of TKI combined with ICI was 18 (5, 38) months, and the median overall survival (OS) was not reached. The median PFS and OS were 12 (5, 14) months and 30 (10, 32) months in the bevacizumab combined with erlotinib treatment group, respectively. The median PFS and OS were 10 (3, 64) months and 44 (10, 74) months in the TKI monotherapy group, respectively. PFS ( P=0.009) and OS ( P=0.006) in TKI combined with ICI group were better than those in bevacizumab combined with erlotinib group. The median PFS ( P=0.003) and median OS ( P=0.028) in TKI combined with ICI group were better than those in TKI monotherapy group. Conclusions:HLRCC-RCC is rare but has a high degree of malignancy, poor prognosis and familial genetic characteristics. Immunohistochemical staining with strong positive 2-SC and negative FH can provide an important basis for clinical diagnosis. Genetic detection of FH gene germ line mutation can confirm the diagnosis. The preliminary study results confirmed that TKI combined with ICI had a good clinical effect, but it needs to be confirmed by the results of a large sample multi-center randomized controlled clinical study.
5.Systematic identification of CRISPR off-target effects by CROss-seq.
Yan LI ; Shengyao ZHI ; Tong WU ; Hong-Xuan CHEN ; Rui KANG ; Dong-Zhao MA ; Zhou SONGYANG ; Chuan HE ; Puping LIANG ; Guan-Zheng LUO
Protein & Cell 2023;14(4):299-303
6.Erratum to: Questions about NgAgo.
Shawn BURGESS ; Linzhao CHENG ; Feng GU ; Junjiu HUANG ; Zhiwei HUANG ; Shuo LIN ; Jinsong LI ; Wei LI ; Wei QIN ; Yujie SUN ; Zhou SONGYANG ; Wensheng WEI ; Qiang WU ; Haoyi WANG ; Xiaoqun WANG ; Jing-Wei XIONG ; Jianzhong XI ; Hui YANG ; Bin ZHOU ; Bo ZHANG
Protein & Cell 2017;8(1):77-77
7.Questions about NgAgo.
Shawn BURGESS ; Linzhao CHENG ; Feng GU ; Junjiu HUANG ; Zhiwei HUANG ; Shuo LIN ; Jinsong LI ; Wei LI ; Wei QIN ; Yujie SUN ; Zhou SONGYANG ; Wensheng WEI ; Qiang WU ; Haoyi WANG ; Xiaoqun WANG ; Jing-Wei XIONG ; Jianzhong XI ; Hui YANG ; Bin ZHOU ; Bo ZHANG
Protein & Cell 2016;7(12):913-915
Animals
;
Archaeal Proteins
;
genetics
;
metabolism
;
Deoxyribonuclease I
;
genetics
;
metabolism
;
Gene Editing
;
methods
;
Humans
;
Natronobacterium
;
enzymology
;
genetics
8.Live cell imaging and proteomic profiling of endogenous NEAT1 lncRNA by CRISPR/Cas9-mediated knock-in.
Bohong CHEN ; Shengcheng DENG ; Tianyu GE ; Miaoman YE ; Jianping YU ; Song LIN ; Wenbin MA ; Zhou SONGYANG
Protein & Cell 2020;11(9):641-660
In mammalian cells, long noncoding RNAs (lncRNAs) form complexes with proteins to execute various biological functions such as gene transcription, RNA processing and other signaling activities. However, methods to track endogenous lncRNA dynamics in live cells and screen for lncRNA interacting proteins are limited. Here, we report the development of CERTIS (CRISPR-mediated Endogenous lncRNA Tracking and Immunoprecipitation System) to visualize and isolate endogenous lncRNA, by precisely inserting a 24-repeat MS2 tag into the distal end of lncRNA locus through the CRISPR/Cas9 technology. In this study, we show that CERTIS effectively labeled the paraspeckle lncRNA NEAT1 without disturbing its physiological properties and could monitor the endogenous expression variation of NEAT1. In addition, CERTIS displayed superior performance on both short- and long-term tracking of NEAT1 dynamics in live cells. We found that NEAT1 and paraspeckles were sensitive to topoisomerase I specific inhibitors. Moreover, RNA Immunoprecipitation (RIP) of the MS2-tagged NEAT1 lncRNA successfully revealed several new protein components of paraspeckle. Our results support CERTIS as a tool suitable to track both spatial and temporal lncRNA regulation in live cells as well as study the lncRNA-protein interactomes.
9.CRISPR-assisted transcription activation by phase-separation proteins.
Jiaqi LIU ; Yuxi CHEN ; Baoting NONG ; Xiao LUO ; Kaixin CUI ; Zhan LI ; Pengfei ZHANG ; Wenqiong TAN ; Yue YANG ; Wenbin MA ; Puping LIANG ; Zhou SONGYANG
Protein & Cell 2023;14(12):874-887
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been widely used for genome engineering and transcriptional regulation in many different organisms. Current CRISPR-activation (CRISPRa) platforms often require multiple components because of inefficient transcriptional activation. Here, we fused different phase-separation proteins to dCas9-VPR (dCas9-VP64-P65-RTA) and observed robust increases in transcriptional activation efficiency. Notably, human NUP98 (nucleoporin 98) and FUS (fused in sarcoma) IDR domains were best at enhancing dCas9-VPR activity, with dCas9-VPR-FUS IDR (VPRF) outperforming the other CRISPRa systems tested in this study in both activation efficiency and system simplicity. dCas9-VPRF overcomes the target strand bias and widens gRNA designing windows without affecting the off-target effect of dCas9-VPR. These findings demonstrate the feasibility of using phase-separation proteins to assist in the regulation of gene expression and support the broad appeal of the dCas9-VPRF system in basic and clinical applications.
Humans
;
Transcriptional Activation
;
RNA, Guide, CRISPR-Cas Systems
;
Gene Expression Regulation
;
CRISPR-Cas Systems/genetics*
10.CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes.
Puping LIANG ; Yanwen XU ; Xiya ZHANG ; Chenhui DING ; Rui HUANG ; Zhen ZHANG ; Jie LV ; Xiaowei XIE ; Yuxi CHEN ; Yujing LI ; Ying SUN ; Yaofu BAI ; Zhou SONGYANG ; Wenbin MA ; Canquan ZHOU ; Junjiu HUANG
Protein & Cell 2015;6(5):363-372
Genome editing tools such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated system (Cas) have been widely used to modify genes in model systems including animal zygotes and human cells, and hold tremendous promise for both basic research and clinical applications. To date, a serious knowledge gap remains in our understanding of DNA repair mechanisms in human early embryos, and in the efficiency and potential off-target effects of using technologies such as CRISPR/Cas9 in human pre-implantation embryos. In this report, we used tripronuclear (3PN) zygotes to further investigate CRISPR/Cas9-mediated gene editing in human cells. We found that CRISPR/Cas9 could effectively cleave the endogenous β-globin gene (HBB). However, the efficiency of homologous recombination directed repair (HDR) of HBB was low and the edited embryos were mosaic. Off-target cleavage was also apparent in these 3PN zygotes as revealed by the T7E1 assay and whole-exome sequencing. Furthermore, the endogenous delta-globin gene (HBD), which is homologous to HBB, competed with exogenous donor oligos to act as the repair template, leading to untoward mutations. Our data also indicated that repair of the HBB locus in these embryos occurred preferentially through the non-crossover HDR pathway. Taken together, our work highlights the pressing need to further improve the fidelity and specificity of the CRISPR/Cas9 platform, a prerequisite for any clinical applications of CRSIPR/Cas9-mediated editing.
Blastocyst
;
CRISPR-Cas Systems
;
Hemoglobins, Abnormal
;
genetics
;
metabolism
;
Humans
;
Zygote