1.Construction and identification of recombinant retroviral vector of human ngn3 gene and its packaging cell line.
Yuankui CHU ; Changrong LÜ ; Dongmei CHEN ; Hui CAO ; Zhongying DOU
Chinese Journal of Biotechnology 2010;26(4):448-453
In order to construct the recombinant retrovirus vector of human ngn3 gene and its packaging cell line, we successfully amplified the open reading frame (ORF) of ngn3 gene from human fetal pancreatic tissue by RT-PCR. The PCR products of human ngn3 gene was subcloned into pMD18-T vectors and sequenced. Results showed that its sequence was fully consistent with the ngn3 gene published in GenBank(GenBank Accession No. BC126468). The correct fragment was digested by EcoR I and Hpa I from recombinant pMD18-T vector and inserted into the same restriction enzyme sites of retroviral vector pMSCV-neo. We got recombinant retrovirus vector pMSCV-ngn3, which was identified by double restriction enzyme digestion and then transfected into PT67 cells by lipofectamine 2000. We established the PT67-ngn3 packaging cell line by G418 selection, which was detected by RT-PCR and immunohistochemistry staining. The detection results showed that the Ngn3 expressed at the mRNA and protein level in the packaging cell line. RT-PCR detection and electronic microscope analysis showed that the recombinant retroviral vector pMSCV-ngn3 was packaged into infectious virus particles and released into the supernatant of the cells. These results demonstrated that a PT67-ngn3 packaging cell line was successfully established, and this could facilitate the study of differentiation of the human fetal pancreatic progenitor cells into insulin-producing cells by using the ngn3 gene.
Basic Helix-Loop-Helix Transcription Factors
;
biosynthesis
;
genetics
;
Cell Differentiation
;
drug effects
;
Cell Line
;
Cloning, Molecular
;
Fetus
;
Genetic Vectors
;
genetics
;
Humans
;
Insulin-Secreting Cells
;
cytology
;
Molecular Sequence Data
;
Nerve Tissue Proteins
;
biosynthesis
;
genetics
;
Open Reading Frames
;
genetics
;
Pancreas
;
cytology
;
RNA, Messenger
;
biosynthesis
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
pharmacology
;
Retroviridae
;
genetics
;
metabolism
;
Stem Cells
;
cytology
;
Transfection