1.Desktop-Stereolithography 3D Printing of a Decellularized Extracellular Matrix/Mesenchymal Stem Cell Exosome Bioink for Vaginal Reconstruction
Wenxin SHI ; Jiahua ZHENG ; Jingkun ZHANG ; Xiaoli DONG ; Zhongkang LI ; Yanlai XIAO ; Qian LI ; Xianghua HUANG ; Yanfang DU
Tissue Engineering and Regenerative Medicine 2024;21(6):943-957
BACKGROUND:
3D-printing is widely used in regenerative medicine and is expected to achieve vaginal morphological restoration and true functional reconstruction. Mesenchymal stem cells-derived exosomes (MSCs-Exos) were applyed in the regeneration of various tissues. The current study aimed to explore the effctive of MSCs-Exos in vaginal reconstruction.
METHODS:
In this work, hydrogel was designed using decellularized extracellular matrix (dECM) and gelatin methacrylate (GelMA) and silk fibroin (SF). The biological scaffolds were constructed using desktop-stereolithography.The physicochemical properties of the hydrogels were evaluated; Some experiments have been conducted to evaluate exosomes’ effect of promotion vaginal reconstruction and to explore the mechanism in this process.
RESULTS:
It was observed that the sustained release property of exosomes in the hydrogel both in vitro and in vitro.The results revealed that 3D scaffold encapsulating exosomes expressed significant effects on the vascularization and musule regeneration of the regenerative vagina tissue. Also, MSCs-Exos strongly promoted vascularization in the vaginal reconstruction of rats, which may through the PI3K/AKT signaling pathway.
CONCLUSION
The use of exosome-hydrogel composites improved the epithelial regeneration of vaginal tissue, increased angiogenesis, and promoted smooth muscle tissue regeneration. 3D-printed, lumenal scaffold encapsulating exosomes might be used as a cell-free alternative treatment strategy for vaginal reconstruction.
2.Desktop-Stereolithography 3D Printing of a Decellularized Extracellular Matrix/Mesenchymal Stem Cell Exosome Bioink for Vaginal Reconstruction
Wenxin SHI ; Jiahua ZHENG ; Jingkun ZHANG ; Xiaoli DONG ; Zhongkang LI ; Yanlai XIAO ; Qian LI ; Xianghua HUANG ; Yanfang DU
Tissue Engineering and Regenerative Medicine 2024;21(6):943-957
BACKGROUND:
3D-printing is widely used in regenerative medicine and is expected to achieve vaginal morphological restoration and true functional reconstruction. Mesenchymal stem cells-derived exosomes (MSCs-Exos) were applyed in the regeneration of various tissues. The current study aimed to explore the effctive of MSCs-Exos in vaginal reconstruction.
METHODS:
In this work, hydrogel was designed using decellularized extracellular matrix (dECM) and gelatin methacrylate (GelMA) and silk fibroin (SF). The biological scaffolds were constructed using desktop-stereolithography.The physicochemical properties of the hydrogels were evaluated; Some experiments have been conducted to evaluate exosomes’ effect of promotion vaginal reconstruction and to explore the mechanism in this process.
RESULTS:
It was observed that the sustained release property of exosomes in the hydrogel both in vitro and in vitro.The results revealed that 3D scaffold encapsulating exosomes expressed significant effects on the vascularization and musule regeneration of the regenerative vagina tissue. Also, MSCs-Exos strongly promoted vascularization in the vaginal reconstruction of rats, which may through the PI3K/AKT signaling pathway.
CONCLUSION
The use of exosome-hydrogel composites improved the epithelial regeneration of vaginal tissue, increased angiogenesis, and promoted smooth muscle tissue regeneration. 3D-printed, lumenal scaffold encapsulating exosomes might be used as a cell-free alternative treatment strategy for vaginal reconstruction.
3.Desktop-Stereolithography 3D Printing of a Decellularized Extracellular Matrix/Mesenchymal Stem Cell Exosome Bioink for Vaginal Reconstruction
Wenxin SHI ; Jiahua ZHENG ; Jingkun ZHANG ; Xiaoli DONG ; Zhongkang LI ; Yanlai XIAO ; Qian LI ; Xianghua HUANG ; Yanfang DU
Tissue Engineering and Regenerative Medicine 2024;21(6):943-957
BACKGROUND:
3D-printing is widely used in regenerative medicine and is expected to achieve vaginal morphological restoration and true functional reconstruction. Mesenchymal stem cells-derived exosomes (MSCs-Exos) were applyed in the regeneration of various tissues. The current study aimed to explore the effctive of MSCs-Exos in vaginal reconstruction.
METHODS:
In this work, hydrogel was designed using decellularized extracellular matrix (dECM) and gelatin methacrylate (GelMA) and silk fibroin (SF). The biological scaffolds were constructed using desktop-stereolithography.The physicochemical properties of the hydrogels were evaluated; Some experiments have been conducted to evaluate exosomes’ effect of promotion vaginal reconstruction and to explore the mechanism in this process.
RESULTS:
It was observed that the sustained release property of exosomes in the hydrogel both in vitro and in vitro.The results revealed that 3D scaffold encapsulating exosomes expressed significant effects on the vascularization and musule regeneration of the regenerative vagina tissue. Also, MSCs-Exos strongly promoted vascularization in the vaginal reconstruction of rats, which may through the PI3K/AKT signaling pathway.
CONCLUSION
The use of exosome-hydrogel composites improved the epithelial regeneration of vaginal tissue, increased angiogenesis, and promoted smooth muscle tissue regeneration. 3D-printed, lumenal scaffold encapsulating exosomes might be used as a cell-free alternative treatment strategy for vaginal reconstruction.
4.Desktop-Stereolithography 3D Printing of a Decellularized Extracellular Matrix/Mesenchymal Stem Cell Exosome Bioink for Vaginal Reconstruction
Wenxin SHI ; Jiahua ZHENG ; Jingkun ZHANG ; Xiaoli DONG ; Zhongkang LI ; Yanlai XIAO ; Qian LI ; Xianghua HUANG ; Yanfang DU
Tissue Engineering and Regenerative Medicine 2024;21(6):943-957
BACKGROUND:
3D-printing is widely used in regenerative medicine and is expected to achieve vaginal morphological restoration and true functional reconstruction. Mesenchymal stem cells-derived exosomes (MSCs-Exos) were applyed in the regeneration of various tissues. The current study aimed to explore the effctive of MSCs-Exos in vaginal reconstruction.
METHODS:
In this work, hydrogel was designed using decellularized extracellular matrix (dECM) and gelatin methacrylate (GelMA) and silk fibroin (SF). The biological scaffolds were constructed using desktop-stereolithography.The physicochemical properties of the hydrogels were evaluated; Some experiments have been conducted to evaluate exosomes’ effect of promotion vaginal reconstruction and to explore the mechanism in this process.
RESULTS:
It was observed that the sustained release property of exosomes in the hydrogel both in vitro and in vitro.The results revealed that 3D scaffold encapsulating exosomes expressed significant effects on the vascularization and musule regeneration of the regenerative vagina tissue. Also, MSCs-Exos strongly promoted vascularization in the vaginal reconstruction of rats, which may through the PI3K/AKT signaling pathway.
CONCLUSION
The use of exosome-hydrogel composites improved the epithelial regeneration of vaginal tissue, increased angiogenesis, and promoted smooth muscle tissue regeneration. 3D-printed, lumenal scaffold encapsulating exosomes might be used as a cell-free alternative treatment strategy for vaginal reconstruction.
5.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
6.Alternative Biological Material for Tissue Engineering of the Vagina: Porcine-Derived Acellular Vaginal Matrix
Yanpeng TIAN ; Yibin LIU ; Yanlai XIAO ; Zhongkang LI ; Mingle ZHANG ; Liang CHEN ; Zhen LI ; Wangchao ZHANG ; Zhiqiang ZHANG ; Desheng KONG ; Li MENG ; Yanfang DU ; Jingkun ZHANG ; Jingui GAO ; Xianghua HUANG
Tissue Engineering and Regenerative Medicine 2024;21(2):277-290
BACKGROUND:
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a severe congenital disorder characterized by vaginal hypoplasia caused by dysplasia of the Müllerian duct. Patients with MRKH syndrome often require nonsurgical or surgical treatment to achieve satisfactory vaginal length and sexual outcomes. The extracellular matrix has been successfully used for vaginal reconstruction.
METHODS:
In this study, we developed a new biological material derived from porcine vagina (acellular vaginal matrix, AVM) to reconstruct the vagina in Bama miniature pigs. The histological characteristics and efficacy of acellularization of AVM were evaluated, and AVM was subsequently transplanted into Bama miniature pigs to reconstruct the vaginas.
RESULTS:
Macroscopic analysis showed that the neovaginas functioned well in all Bama miniature pigs with AVM implants. Histological analysis and electrophysiological evidence indicated that morphological and functional recovery was restored in normal vaginal tissues. Scanning electron microscopy showed that the neovaginas had mucosal folds characteristics of normal vagina. No significant differences were observed in the expression of CK14, HSP47, and a-actin between the neovaginas and normal vaginal tissues. However, the expression of estrogen receptor (ER) was significantly lower in the neovaginas than in normal vaginal tissues. In addition, AVM promoted the expression of b-catenin, c-Myc, and cyclin D1. These results suggest that AVM might promotes vaginal regeneration by activating the b-catenin/cMyc/cyclin D1 pathway.
CONCLUSION
This study reveals that porcine-derived AVM has potential application for vaginal regeneration.
7.UHPLC-Q-TOF/MS Analysis of the Active Components of Total Flavonoids Extracts from Sarcandra glabra in Promoting Megakaryocyte Differentiation
Zhongkang ZHANG ; Xiaonan LU ; Zhen LU ; Jia HU ; Huizhen LIU ; Ting LU ; Guangbin SHANG
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(1):56-64
Objective To screen the active components of total flavonoid extracts of Sarcandra glabra to promote megakaryocyte differentiation.Methods(1)A model of megakaryocyte differentiation disorder was established by co-culturing human megakaryocytic leukaemia cells(Dami)with human bone marrow stromal cells(HS-5)as an evaluation system,and the experimental groupings were as follows:the Dami group(Dami),the control group(Dami+HS-5),and the PMA group[Dami+HS-5+5 ng·mL-1 foprolol 12-tetradecanoate 13-acetate(PMA)],and model group[Dami+HS-5+1%rabbit anti-rat platelet serum(APS)+5 ng·mL-1 PMA]were cultured for 48 hours.The expressions of megakaryocyte differentiation and maturation surface marker molecules,CD41a and CD61 were detected by flow cytometry.(2)Forty-nine SD male rats were randomly divided into blank plasma group,15-minute group,30-minute group,60-minute group,90-minute group,120-minute group,and 240-minute group,with 7 rats in each group.The rats in each administration group were gavaged with 1.26 g·kg-1 of total flavonoids extracts of Sarcandra glabra,and blood was collected at six set time points(15,30,60,90,120,240 minutes)for the preparation of time-dependent serum-containing plasma of total flavonoids extracts of Sarcandra glabra.(3)Ultra-high performance liquid chromatography-quadrupole tandem time-of-flight mass spectrometry(UHPLC-Q-TOF/MS)was used to analyze the plasma of the time-dependent serum-containing plasma of the total flavonoids extracts of Sarcandra glabra,and the peak area was used to construct a matrix(X-matrix)of the amount of chemical composition change over time in the time-dependent serum-containing plasma of the total flavonoids extracts of Sarcandra glabra.The collected time-dependent serum-containing plasma of the total flavonoids extracts of Sarcandra glabra at six different time points was used to intervene in the model of megakaryocyte differentiation and maturation disorder,and the expression of cell surface molecules CD41a and CD61 was detected by flow cytometry to construct the matrix of effect of time-dependent serum-containing plasma of the total flavonoids extracts of Sarcandra glabra(Y-matrix).(4)After the data of X and Y matrices were standardized,partial least squares(PLS)was used to calculate and analyze the quantitative and qualitative effect relationship,and variable importance for projection(VIP)>1 was used as the threshold to screen the effect components related to the changes of cell surface molecules CD41a and CD61,and chemical composition identification,as the potential effector components in the total flavonoid extracts of Sarcandra glabra were used to promote the differentiation of megakaryocytes,and finally the regression evaluation system was used to verify the efficacy of its medicinal effect.Results(1)Compared with the Dami group,the expression level of CD41a on the surface of Dami cells in the control group was significantly increased(P<0.05).Compared with the control group,the expression levels of CD41a and CD61 on the surface of Dami cells in the PMA group were significantly increased(P<0.01).Compared with the PMA group,the expression levels of CD41a and CD61 on the surface of Dami cells in the model group were significantly reduced(P<0.01).(2)Compared with the blank plasma group,the expression levels of the molecules CD41a and CD61 on the surface of Dami cells at each time point of 15,30,60,90,120,and 240 minutes were significantly increased(P<0.01),and the expression levels of CD41a and CD61 were both highest in the 30-minute group.The potential effective components with VIP value greater than 1 were screened out in the positive and negative ion mode,and 540.3638@12.25 and 559.2991@11.53 were selected for pharmacodynamic verification.559.2991@11.53 was identified as daucosterol(Dau),540.3638@12.25 was identified as rosmarinic acid 4-O-β-D-glucoside(Ros).After Ros and Dau intervened in the megakaryocyte differentiation and maturation disorder model respectively,the expression levels of CD41a and CD61 on the surface of Dami cells in the low-,medium-and high-dose groups(40,60 and 80 μg·mL-1)of Ros and Dau were significantly increased compared with the model group(P<0.05,P<0.01).Conclusion Ros and Dau may be the active components of the total flavonoids extracts of Sarcandra glabra to promote the differentiation of megakaryocytes.
8.Yangyin Huayu Jiedu Preseription Regulates Autophagy and Apoptosis of Colon Cancer Cells in Hypoxic Environment Through PI3K/Akt Signaling Pathway
Xuan CHEN ; Hongning LIU ; Guangbin SHANG ; Ge LIU ; Jia HU ; Zhongkang ZHANG ; Xiaojun YAN
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(20):45-53
ObjectiveTo investigate the effect of different oxygen concentration on the proliferation and autophagy of colon cancer cells and to explore the effect of Yangyin Huayu Jiedu Preseription (YHJP) on autophagy and apoptosis of colon cancer cells under hypoxia based on phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. MethodHCT-116 cells were divided into normoxia group, 1% O2 group, and 5% O2 group. Cell viability was detected by cell proliferation assay (MTS), and autophagy was observed based on monodansylcadaverine (MDC) staining. HCT-116 cells were treated with YHJP in 5% O2 microenvironment. The cells were divided into normal group, blank serum group, and low-, medium-, high-dose YHJP groups (5%, 15%, 25% serum containing YHJP). Cell inhibition rate in each group was calculated by MTS, and changes in the rate of autophagy were detected based on MDC staining. Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) was employed to detect the apoptosis rate of each group. Western blotting was applied to measure the expression of autophagy proteins microtubule-associated protein 1 light chain 3 (LC3Ⅱ/Ⅰ), yeast Atg6 homolog (Beclin-1), ubiquitin-binding scaffold protein p62 (p62), apoptosis-related proteins B-cell lymphoma-2 (Bcl-2), Bcl-2/adenovirus E1B interacting protein 3 (BNIP-3), and Bcl-2 associated X protein (Bax), cleaved cysteine-aspartic acid protease-3 (Caspase-3), hypoxia-inducible factor-1α (HIF-1α) and pathway proteins PI3K, phosphorylated (p)-PI3K, Akt, and p-Akt. ResultCell survival rates of the 1% O2 and 5% O2 groups were increased compared with that in the normoxia group, particularly the 5% O2 group (P<0.01). The fluorescence intensity for autophagy in 1% O2 and 5% O2 groups was significantly increased compared with that in the normoxia group, especially the 5% O2 group. In the presence of 5% O2, compared with the blank serum group, medium-dose and high-dose YHJP groups showed high cell inhibition rate, low autophagy rate, high apoptosis rate (P<0.01), and low expression of Beclin-1 protein (P<0.05). Compared with low-dose YHJP group, high-dose YHJP group demonstrated low expression of Beclin-1 protein (P<0.05). Compared with the blank serum group, the three YHJP groups had low expression of LC3Ⅱ/Ⅰ protein (P<0.05, P<0.01). Compared with the blank serum group, medium-dose and high-dose YHJP groups showed high expression of p62 protein (P<0.01). Compared with low-dose YHJP group, high-dose YHJP group showed high expression of p62 protein (P<0.05). Compared with the blank serum group, high-dose YHJP increased the expression of BNIP-3 and Bax and decreased the expression of Bcl-2 (P<0.01). The expression of Bax protein in the high-dose YHJP group was increased compared with that in the low-dose YHJP group (P<0.05). The expression of HIF-1α in the medium-dose and high-dose YHJP groups was decreased (P<0.01) and the expression of p-PI3K/PI3K and p-Akt/Akt in the high-dose YHJP group was increased (P<0.05, P<0.01) compared with that in the blank serum group. The expression of p-Akt/Akt was higher in the high-dose YHJP group than in the medium-dose YHJP (P<0.05). ConclusionHypoxic microenvironment can significantly promote autophagy and proliferation of colon cancer cells. YHJP can significantly inhibit autophagy and proliferation and promote apoptosis of colon cancer cells in 5% O2 environment by up-regulating the PI3K/Akt signaling pathway.
9.Population-based active screening strategy contributes to the prevention and control of tuberculosis.
Cheng DING ; Zhongkang JI ; Lin ZHENG ; Xiuyuan JIN ; Bing RUAN ; Ying ZHANG ; Lanjuan LI ; Kaijin XU
Journal of Zhejiang University. Medical sciences 2023;51(6):669-678
Despite the achievements obtained worldwide in the control of tuberculosis in recent years, many countries and regions including China still face challenges such as low diagnosis rate, high missed diagnosis rate, and delayed diagnosis of the disease. The discovery strategy of tuberculosis in China has changed from "active discovery by X-ray examination" to "passive discovery by self-referral due to symptoms", and currently the approach is integrated involving self-referral due to symptoms, active screening, and physical examination. Active screening could help to identify early asymptomatic and untreated cases. With the development of molecular biology and artificial intelligence-assisted diagnosis technology, there are more options for active screening among the large-scale populations. Although the implementation cost of a population-based active screening strategy is high, it has great value in social benefits, and active screening in special populations can obtain better benefits. Active screening of tuberculosis is an important component of the disease control. It is suggested that active screening strategies should be optimized according to the specific conditions of the regions to ultimately ensure the benefit of the tuberculosis control.
Humans
;
Artificial Intelligence
;
Tuberculosis/prevention & control*
;
Mass Screening
;
China