1.Protocol for development of Guideline for Interventions on Cervical Spine Health.
Jing LI ; Guang-Qi LU ; Ming-Hui ZHUANG ; Xin-Yue SUN ; Ya-Kun LIU ; Ming-Ming MA ; Li-Guo ZHU ; Zhong-Shi LI ; Wei CHEN ; Ji-Ge DONG ; Le-Wei ZHANG ; Jie YU
China Journal of Orthopaedics and Traumatology 2025;38(10):1083-1088
Cervical spine health issues not only seriously affect patients' quality of life but also impose a heavy burden on the social healthcare system. Existing guidelines lack sufficient clinical guidance on lifestyle and work habits, such as exercise, posture, daily routine, and diet, making it difficult to meet practical needs. To address this, relying on the China Association of Chinese Medicine, Wangjing Hospital of China Academy of Chinese Medical Sciences took the lead and joined hands with more than ten institutions to form a multidisciplinary guideline development group. For the first time, the group developed the Guidelines for Cervical Spine Health Intervention based on evidence-based medicine methods, strictly following the standardized procedures outlined in the World Health Organization Handbook for Guideline Development and the Guiding Principles for the Formulation/Revision of Clinical Practice Guidelines in China (2022 Edition). This proposal systematically explains the methods and steps for developing the guideline, aiming to make the guideline development process scientific, standardized, and transparent.
Humans
;
Practice Guidelines as Topic/standards*
;
Cervical Vertebrae
;
China
2.Varicocele ligation with mobile phone microscope: Report of 5 cases and literature review.
Yan-Zhong LIU ; Chao LI ; Yu GAO ; Yu-Zhu LI ; Run ZHU ; Xue-Yuan XIANG ; Ying-Na HU ; Xin MA ; Chun-Yang WANG
National Journal of Andrology 2025;31(8):709-712
OBJECTIVE:
To investigate the feasibility of varicocele ligation with mobile phone microscope.
METHODS:
The high-performance mobile phone and mobile phone stand were combined to act as a mobile phone microscope. And the varicocele ligation was performed under the mobile phone microscope.
RESULTS:
All five patients successfully underwent varicocelectomy under the guidance of a mobile phone microscope. The average operation time was (112.8 ± 52.2)with ranged from 74.0 to 195.0 minutes. Three patients completed the follow-up after the operation with the proportion of improved sperm quality reaching 100.0% (3/3).
CONCLUSION
High- performance mobile phone microscope can be used for varicocele ligation.
Humans
;
Male
;
Ligation/methods*
;
Cell Phone
;
Adult
;
Varicocele/surgery*
;
Microscopy
;
Young Adult
3.A small molecule cryptotanshinone induces non-enzymatic NQO1-dependent necrosis in cancer cells through the JNK1/2/Iron/PARP/calcium pathway.
Ying HOU ; Bingling ZHONG ; Lin ZHAO ; Heng WANG ; Yanyan ZHU ; Xianzhe WANG ; Haoyi ZHENG ; Jie YU ; Guokai LIU ; Xin WANG ; Jose M MARTIN-GARCIA ; Xiuping CHEN
Acta Pharmaceutica Sinica B 2025;15(2):991-1006
Human NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavoenzyme expressed at high levels in multiple solid tumors, making it an attractive target for anticancer drugs. Bioactivatable drugs targeting NQO1, such as β-lapachone (β-lap), are currently in clinical trials for the treatment of cancer. β-Lap selectively kills NQO1-positive (NQO1+) cancer cells by inducing reactive oxygen species (ROS) via catalytic activation of NQO1. In this study, we demonstrated that cryptotanshinone (CTS), a naturally occurring compound, induces NQO1-dependent necrosis without affecting NQO1 activity. CTS selectively kills NQO1+ cancer cells by inducing NQO1-dependent necrosis. Interestingly, CTS directly binds to NQO1 but does not activate its catalytic activity. In addition, CTS enables activation of JNK1/2 and PARP, accumulation of iron and Ca2+, and depletion of ATP and NAD+. Furthermore, CTS selectively suppressed tumor growth in the NQO1+ xenograft models, which was reversed by NQO1 inhibitor and NQO1 shRNA. In conclusion, CTS induces NQO1-dependent necrosis via the JNK1/2/iron/PARP/NAD+/Ca2+ signaling pathway. This study demonstrates the non-enzymatic function of NQO1 in inducing cell death and provides new avenues for the design and development of NQO1-targeted anticancer drugs.
4.Strychni Semen and its active compounds promote axon regeneration following peripheral nerve injury by suppressing myeloperoxidase in the dorsal root ganglia.
Yan ZHANG ; Xin-Yue ZHAO ; Meng-Ting LIU ; Zhu-Chen ZHOU ; Hui-Bin CHENG ; Xu-Hong JIANG ; Yan-Rong ZHENG ; Zhong CHEN
Journal of Integrative Medicine 2025;23(2):169-181
OBJECTIVE:
Treating peripheral nerve injury (PNI) presents a clinical challenge due to limited axon regeneration. Strychni Semen, a traditional Chinese medicine, is clinically used for numbness and hemiplegia. However, its role in promoting functional recovery after PNI and the related mechanisms have not yet been systematically studied.
METHODS:
A mouse model of sciatic nerve crush (SNC) injury was established and the mice received drug treatment via intragastric gavage, followed by behavioral assessments (adhesive removal test, hot-plate test and Von Frey test). Transcriptomic analyses were performed to examine gene expression in the dorsal root ganglia (DRGs) from the third to the sixth lumbar vertebrae, so as to identify the significantly differentially expressed genes. Immunofluorescence staining was used to assess the expression levels of superior cervical ganglia neural-specific 10 protein (SCG10). The ultra-trace protein detection technique was used to evaluate changes in gene expression levels.
RESULTS:
Strychni Semen and its active compounds (brucine and strychnine) improved functional recovery in mice following SNC injury. Transcriptomic data indicated that Strychni Semen and its active compounds initiated transcriptional reprogramming that impacted cellular morphology and extracellular matrix remodeling in DRGs after SNC, suggesting potential roles in promoting axon regeneration. Imaging data further confirmed that Strychni Semen and its active compounds facilitated axon regrowth in SNC-injured mice. By integrating protein-protein interaction predictions, ultra-trace protein detection, and molecular docking analysis, we identified myeloperoxidase as a potentially critical factor in the axon regenerative effects conferred by Strychni Semen and its active compounds.
CONCLUSION
Strychni Semen and its active compounds enhance sensory function by promoting axonal regeneration after PNI. These findings establish a foundation for the future applications of Strychni Semen and highlight novel therapeutic strategies and drug targets for axon regeneration. Please cite this article as: Zhang Y, Zhao XY, Liu MT, Zhou ZC, Cheng HB, Jiang XH, Zheng YR, Chen Z. Strychni Semen and its active compounds promote axon regeneration following peripheral nerve injury by suppressing myeloperoxidase in the dorsal root ganglia. J Integr Med. 2025; 23(2): 169-181.
Animals
;
Nerve Regeneration/drug effects*
;
Mice
;
Peripheral Nerve Injuries/physiopathology*
;
Male
;
Ganglia, Spinal/enzymology*
;
Axons/physiology*
;
Peroxidase/antagonists & inhibitors*
;
Mice, Inbred C57BL
;
Drugs, Chinese Herbal/pharmacology*
;
Disease Models, Animal
;
Strychnine/pharmacology*
5.Deep learning-based recognition of stained tongue coating images
Liqin ZHONG ; Guojiang XIN ; Qinghua PENG ; Ji CUI ; Lei ZHU ; Hao LIANG
Digital Chinese Medicine 2024;7(2):129-136
Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images. Methods A total of 1 001 images of stained tongue coating from healthy students at Hunan University of Chinese Medicine and 1 007 images of pathological(non-stained)tongue coat-ing from hospitalized patients at The First Hospital of Hunan University of Chinese Medicine with lung cancer,diabetes,and hypertension were collected.The tongue images were randomi-zed into the training,validation,and testing datasets in a 7:2:1 ratio.A deep learning model was constructed using the ResNet50 for recognizing stained tongue coating in the training and validation datasets.The training period was 90 epochs.The model's performance was evaluated by its accuracy,loss curve,recall,F1 score,confusion matrix,receiver operating characteristic(ROC)curve,and precision-recall(PR)curve in the tasks of predicting stained tongue coating images in the testing dataset.The accuracy of the deep learning model was compared with that of attending physicians of traditional Chinese medicine(TCM). Results The training results showed that after 90 epochs,the model presented an excellent classification performance.The loss curve and accuracy were stable,showing no signs of overfitting.The model achieved an accuracy,recall,and F1 score of 92%,91%,and 92%,re-spectively.The confusion matrix revealed an accuracy of 92%for the model and 69%for TCM practitioners.The areas under the ROC and PR curves were 0.97 and 0.95,respectively. Conclusion The deep learning model constructed using ResNet50 can effectively recognize stained coating images with greater accuracy than visual inspection of TCM practitioners.This model has the potential to assist doctors in identifying false tongue coating and prevent-ing misdiagnosis.
6.Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
Shou-Wu WU ; Shao-Kun LIN ; Zhong-Zhu NIAN ; Xin-Wen WANG ; Wei-Nian LIN ; Li-Ming ZHUANG ; Zhi-Sheng WU ; Zhi-Wei HUANG ; A-Min WANG ; Ni-Li GAO ; Jia-Wen CHEN ; Wen-Ting YUAN ; Kai-Xian LU ; Jun LIAO
Progress in Biochemistry and Biophysics 2024;51(9):2182-2193
ObjectiveTo investigate the effect of mucin 1 (MUC1) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) and its regulatory mechanism. MethodsThe 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital. The expression of MUC1 was measured by real-time quantitative PCR (qPCR) in the patients with PNC. The 5-8F and HNE1 cells were transfected with siRNA control (si-control) or siRNA targeting MUC1 (si-MUC1). Cell proliferation was analyzed by cell counting kit-8 and colony formation assay, and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells. The qPCR and ELISA were executed to analyze the levels of TNF-α and IL-6. Western blot was performed to measure the expression of MUC1, NF-кB and apoptosis-related proteins (Bax and Bcl-2). ResultsThe expression of MUC1 was up-regulated in the NPC tissues, and NPC patients with the high MUC1 expression were inclined to EBV infection, growth and metastasis of NPC. Loss of MUC1 restrained malignant features, including the proliferation and apoptosis, downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells. ConclusionDownregulation of MUC1 restrained biological characteristics of malignancy, including cell proliferation and apoptosis, by inactivating NF-κB signaling pathway in NPC.
7.Cloning and interacted protein identification of AP1 homologous gene from Lonicera macranthoides
Ya-xin YU ; Li-jun LONG ; Chang-zhu LI ; Hui-jie ZENG ; Zhong-quan QIAO ; Si-si LIU ; Ying-zi MA
Acta Pharmaceutica Sinica 2024;59(10):2880-2888
The
8.Chemical diversity of azaphilones from the marine-derived fungus Talaromyces sp. HK1-18
Jia-cheng XUE ; Zhong-hui LI ; Bao-cong HAO ; Yao-yao ZHENG ; Xia-hao ZHU ; Zhi-xin CHEN ; Min CHEN
Acta Pharmaceutica Sinica 2024;59(5):1478-1483
GNPS-based mass spectrum-molecular networks is an effective strategy for rapidly identifying known natural products and discovering novel structures. The chemical diversity of azaphilones from the fermentation extracts of
9.Jianwei Xiaozhang Tablets Improves Precancerous Lesions of Gastric Cancer in Rats via Regulating PI3K-Akt-eNOS Pathway
Hai-Yang HUANG ; Shao-Wen ZHONG ; Yun AN ; Yu-Xin WANG ; Shu-Min ZHU ; Jie GAO ; Xiao-Min LU ; Ming-Guo DONG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):709-718
Objective To investigate the therapeutic effect and mechanism of Jianwei Xiaozhang Tablets on rats with precancerous lesions of gastric cancer(PLGC).Methods Forty male SD rats were randomly divided into the normal group,the model group,the folic acid group and the Jianwei Xiaozhang Tablets group,with 10 rats in each group.In addition to the normal group,the other three groups of rats were prepared by gavage with Ranitidine Aqueous Solution combined with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)solution drinking method for the preparation of PLGC model.After successful modeling,drugs were administered accordingly for 7 weeks.The changes in body mass of rats during modeling and drug administration were recorded,the gross view of the stomach was observed and scored pathologically,the coefficients of spleen and liver were determined,the pathological changes in gastric tissue were observed by hematoxylin-eosin(HE)staining,enzyme-linked immunosorbent assay(ELISA)was used to measure serum gastrin(GAS),motilin(MTL)and glucagon(GC),Alisin Blue-Periodic Acid Schiff's(AB-PAS)staining was used to observe the thickness of the mucosal layer of gastric tissues,the expressions of phosphatidylinositol 3-kinase(PI3K),phosphorylated PI3K(p-PI3K),protein kinase B(Akt),phosphorylated Akt(p-Akt),and endothelial-type nitric oxide synthase(eNOS)proteins in gastric tissues were detected by protein immunoblotting(Western Blot),and the expression of vascular endothelial growth factor A(VEGFA)protein in gastric tissues was detected by immunofluorescence staining.Results Compared with the normal group,the body mass of rats in the model group grew slowly during the experimental period,gastric macroscopic pathological scores were significantly increased(P<0.01),splenic coefficient and hepatic coefficient were significantly decreased(P<0.01),the gastric tissues showed cuprocyte hyperplasia and intestinal chemotaxis,gastric tissues'inflammation scores were significantly increased(P<0.01),the serum GAS content was significantly increased(P<0.01),and the MTL,GC contents were significantly reduced(P<0.05),and the thickness of the mucous membrane layer of gastric tissue was significantly reduced(P<0.05),the protein expression levels of PI3K,p-PI3K,Akt,p-Akt and eNOS were reduced(P<0.01),and the protein expression level of VEGFA was reduced(P<0.01);compared with the model group,the above indexes of the Jianwei Xiaozhang Tablets group and the folic acid group were all significantly improved(P<0.05 or P<0.01),among which,the Jianwei Xiaozhang Tablets group had a better improvement effect in the proliferation of cup cells and intestinal chemotaxis in gastric tissues,the content of serum GAS,and the thickness of the mucous layer in gastric tissues.Conclusion The mechanism of the improvement of PLGC in rats by Jianwei Xiaozhang Tablets may be related to the activation of the PI3K-Akt-eNOS pathway,which in turn promotes the angiogenesis and repair of gastric damaged tissues.
10.The lysine methyltransferase SMYD2 facilitates neointimal hyperplasia by regulating the HDAC3-SRF axis.
Xiaoxuan ZHONG ; Xiang WEI ; Yan XU ; Xuehai ZHU ; Bo HUO ; Xian GUO ; Gaoke FENG ; Zihao ZHANG ; Xin FENG ; Zemin FANG ; Yuxuan LUO ; Xin YI ; Ding-Sheng JIANG
Acta Pharmaceutica Sinica B 2024;14(2):712-728
Coronary restenosis is an important cause of poor long-term prognosis in patients with coronary heart disease. Here, we show that lysine methyltransferase SMYD2 expression in the nucleus is significantly elevated in serum- and PDGF-BB-induced vascular smooth muscle cells (VSMCs), and in tissues of carotid artery injury-induced neointimal hyperplasia. Smyd2 overexpression in VSMCs (Smyd2-vTg) facilitates, but treatment with its specific inhibitor LLY-507 or SMYD2 knockdown significantly inhibits VSMC phenotypic switching and carotid artery injury-induced neointima formation in mice. Transcriptome sequencing revealed that SMYD2 knockdown represses the expression of serum response factor (SRF) target genes and that SRF overexpression largely reverses the inhibitory effect of SMYD2 knockdown on VSMC proliferation. HDAC3 directly interacts with and deacetylates SRF, which enhances SRF transcriptional activity in VSMCs. Moreover, SMYD2 promotes HDAC3 expression via tri-methylation of H3K36 at its promoter. RGFP966, a specific inhibitor of HDAC3, not only counteracts the pro-proliferation effect of SMYD2 overexpression on VSMCs, but also inhibits carotid artery injury-induced neointima formation in mice. HDAC3 partially abolishes the inhibitory effect of SMYD2 knockdown on VSMC proliferation in a deacetylase activity-dependent manner. Our results reveal that the SMYD2-HDAC3-SRF axis constitutes a novel and critical epigenetic mechanism that regulates VSMC phenotypic switching and neointimal hyperplasia.

Result Analysis
Print
Save
E-mail