1.Comparative study of VAC in the preoperative and postoperative treatment of bedsore united with skin flap
Chaoqi YIN ; Zhixing KANG ; Chengqun LUO ; Ping LI ; Jia CHEN ; Shaohua WANG ; Jianda ZHOU
Journal of Chinese Physician 2017;19(5):644-646,649
Objective To investigate the clinical efficacy and mechanism of vacuum-assisted closure (VAC) in the preoperative and postoperative treatment of bedsore united with skin flap.Methods Twenty two cases with bedsore were randomly divided into experimental and control groups.In the control group,the surgery of flap was performed after the treatment of continuous negative pressure about 7-10 days and the VAC was not applied after operation.While in the experimental group,VAC was not used before operation.It was applied on flaps as soon as sutured the border of flap and decubitus ulcers and removed after 7-10 days.By comparing the general appearance of two groups,microvessel count and the detection rate of bacterial culture and other indicators,the clinical effects of two treatments were investigated and the preliminary mechanism was analyzed.Results After preoperative VAC treatment,11 cases of control group showed a little granulation tissue growth,less subcutaneous hematoma and wound effusion,increased microvessel count and negative bacterial culture.However,there were 4 cases of death cavity residual,subcutaneous hematoma and wound effusion,positive bacterial culture and another 4 cases of delayed healing with skin flap repairing bedsore.The application of VAC in experimental group showed close contact of flap with the basement,less effusion,increased microvessel count and negative bacterial culture.One case of skin flap had a small area of separation,after the dressing of skin and the flap survived.The other wounds healed by first intention.Conclusions The use of VAC to repair bedsore can reduce the number of operation,and it is beneficial to the flap survival.
2.Nicotinamide mononucleotide attenuates ischemia-reperfusion injury induced by donor liver from cardiac death through Sirt3
Zhixing JIA ; Ying CHENG ; Huiyuan LI ; Degong JIA
Organ Transplantation 2022;13(5):618-
Objective To evaluate the effect and mechanism of nicotinamide mononucleotide (NMN) on ischemia-reperfusion injury (IRI) induced by donor liver after cardiac death in rat models. Methods Rat models of orthotopic liver transplantation were established by "magnetic ring + double cuff" method. SD rats were randomly divided into the sham operation group (Sham group), orthotopic liver transplantation group (OLT group), NMN treatment + orthotopic liver transplantation group (NMN group), NMN+sirtuin-3 (Sirt3) inhibitor (3-TYP) + orthotopic liver transplantation group (NMN+3-TYP group), respectively. Pathological changes and hepatocyte apoptosis of the rats were observed in each group. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were determined. Superoxide dismutase (SOD) and malondialdehyde (MDA) contents in liver tissues were detected. The expression levels of Sirt3, microtubule-associated protein 1 light chain 3 (LC3)Ⅱ, PTEN-induced putative kinase 1 (PINK1), Parkin and translocase of the outer mitochondrial membrane 20 (TOMM20) in liver tissues were measured. Postoperative survival of the rats in each group was analyzed. Results Compared with the Sham group, serum ALT and AST levels were higher in the OLT group. Compared with the OLT group, the levels of ALT and AST were decreased in the NMN group. Compared with the NMN group, the levels of ALT and AST were increased in the NMN +3-TYP group (all
3.Application progress of extracellular vesicle in liver transplantation
Degong JIA ; Zhixing JIA ; Shanshan GUO ; Ying CHENG
Organ Transplantation 2021;12(4):477-
Liver transplantation is an effective treatment of end-stage liver diseases. However, liver ischemia-reperfusion injury (IRI) and rejection significantly cause the decrease of survival rate of liver graft. Therefore, it is urgent to explore a novel method, which can not only alleviate liver IRI, but also promote immune tolerance of allograft, thereby improving the survival rate of liver graft. Extracellular vesicle (EV) is nanoparticle released from cells into the extracellular microenvironment, which may alleviate graft injury by repairing autophagy, immunosuppression and accelerating tissue regeneration. Hence, EV becomes a research hot spot in the field of liver transplantation. Nevertheless, the clinical application of EV encounters multiple challenges, such as separation, purification, identification, storage of EV and how to deliver EV to the target cells. In this article, the mechanism of EV in liver IRI, the challenges in clinical application of EV and the potential application of EV were reviewed, aiming to provide reference for the clinical application of EV in liver transplantation.
4.Research progress in effects of MAGE-A family on gastric cancer.
Qi JIA ; Xiaohong XIAN ; Yangrun LI ; Jiaxin MU ; Zhixing DU
Journal of Central South University(Medical Sciences) 2023;48(2):260-267
Gastric cancer (GC) is one of the most common malignant tumors worldwide, and most of the patients are diagnosed at the advanced stage. Most of the treating options are comprehensive treatment, in which immunotherapy plays more and more important role. Melanoma antigen-associated gene-A (MAGE-A) family is a kind of cancer testis antigens. Except in germ cells of testis and trophoblast cells of placenta, MAGE-A family is highly expressed in cancerous tissues and participates in a variety of biological processes, such as cancer cell proliferation, differentiation and metastasis. In addition, cancer testis antigen also possesses good immunogenicity, which can induce humoral and cellular immune responses, is a good target for immunotherapy, and has good application value in the diagnosis, treatment and prognosis of GC. A variety of targeted therapeutic drugs based on MAGE-A are in phase I or II clinical trials, it has good safety and potential clinical application value. With the continuous progress of clinical trials and basic research on MAGE-A targets in GC, it is expected to provide a theoretical basis for clinical transformation and immunotherapy of MAGE-A in the future.
Male
;
Humans
;
Stomach Neoplasms/therapy*
;
Antigens, Neoplasm/genetics*
;
Melanoma
;
Immunotherapy
;
Prognosis
5.Si-Wu-Tang attenuates liver fibrosis via regulating lncRNA H19-dependent pathways involving cytoskeleton remodeling and ECM deposition.
Jiaorong QU ; Xiaoyong XUE ; Zhixing WANG ; Zhi MA ; Kexin JIA ; Fanghong LI ; Yinhao ZHANG ; Ruiyu WU ; Fei ZHOU ; Piwen ZHAO ; Xiaojiaoyang LI
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):31-46
Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.
Humans
;
RNA, Long Noncoding/genetics*
;
Liver Cirrhosis/genetics*
;
Liver/metabolism*
;
Hepatic Stellate Cells/pathology*
;
MicroRNAs/metabolism*
;
Extracellular Matrix/metabolism*
;
Drugs, Chinese Herbal
6.Intervention Effect of Ruyi Zhenbao Pills on Mice with Central Pain After Thalamic Stroke
Kexin JIA ; Gejia ZHONG ; Chunyan ZHU ; Luochangting FANG ; Xiaoxiao WANG ; Tengteng XU ; Zhixing HU ; Cairen JUEJIA ; Xianda HU ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2022;28(16):82-89
ObjectiveTo observe the intervention effect of Ruyi Zhenbao pills (RYZBP) on central pain after thalamic stroke in mice and explore the underlying mechanism. MethodThe central post-stroke pain syndrome (CPSP) model was induced by stereotactic injection of type Ⅳ collagenase into the hypothalamus in mice. The mice were divided into a sham group, a model group, low-, medium-, and high-dose RYZBP groups (0.65, 1.3, 2.6 g·kg-1), and a pregabalin group (0.075 g·kg-1). Seven days after modeling, the mice in the groups with drug intervention were administered with corresponding drugs by gavage according to the body mass, once per day for 25 days, while those in the sham group and the model group received an equal volume of normal saline. During this period, mechanical pain and cold pain were detected at different time points, and the apoptotic state of brain tissue cells was detected by in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL). The 36 classical broad-spectrum inflammatory factors were quantitatively analyzed by liquid-phase chip technology, and differential molecules were screened out and verified by Western blot and enzyme-linked immunosorbent assay (ELISA). ResultCompared with sham operation group, mechanical pain threshold and cold sensitive pain threshold in model group were significantly changed (P<0.01). TUNEL results showed that apoptosis of brain cells was obvious. Western blot and ELISA results showed that the expressions of interleukin-1α (IL-1α) and chemokine ligand 5 (CCL5) increased in hypothalamus tissue and serum, while the expressions of Ang-2, granulocyte-colony-stimulating factor (G-CSF) and IL-4 decreased significantly (P<0.01). Compared with model group, RYZBW dose groups significantly increased mechanical pain threshold, decreased cold sensitivity pain threshold, decreased hypothalamus cell apoptosis ratio (P<0.01), decreased the expression of IL-1α and CCL5 in hypothalamus tissue and serum, while the expression of ANG-2, G-CSF and IL-4 were significantly increased (P<0.05). ConclusionRYZBP can relieve hyperalgesia in CPSP mice, and its mechanism is related to the regulation of the expression of pro-/anti-inflammatory factors IL-1α, CCL5, IL-4, G-CSF, and Ang-2.