1. Association of etheno-DNA adduct and DNA methylation level among workers exposed to diesel engine exhaust
Meili SHEN ; Zhini HE ; Xiao ZHANG ; Huawei DUAN ; Yong NIU ; Ping BIN ; Meng YE ; Tao MENG ; Yufei DAI ; Shanfa YU ; Wen CHEN ; Yuxin ZHENG
Chinese Journal of Preventive Medicine 2017;51(6):556-561
Objective:
To investigate the association between etheno-DNA adduct and the promoter of DNA methylation levels of cyclin dependent kinase inhibitor 2A (P16), Ras association domain family 1 (RASSF1A) and O-6-methylguanine-DNA methyltransferase (MGMT) in workers with occupational exposure to diesel engine exhaust (DEE).
Methods:
We recruited 124 diesel engine testing workers as DEE exposure group and 112 water pump operator in the same area as control group in Henan province in 2012 using cluster sampling. The demographic data were obtained by questionnaire survey; urine after work and venous blood samples were collected from each subject. The urinary etheno-DNA adducts were detected using UPLC-MS/MS, including 1,N6-etheno-2'-deoxyadenosine (εdA) and 3,N4-etheno-2'-deoxycytidine(εdC). The DNA methylation levels of P16, RASSF1A, and MGMT were evaluated using bisulfite-pyrosequencing assay. The percentage of methylation was expressed as the 5-methylcytosine (5mC) over the sum of cytosines (%5mC). Spearman correlation and multiple linear regression were applied to analyze the association between etheno-DNA adducts and DNA methylation of P16, RASSF1A, and MGMT.
Results:
The median (
2.Effects of fractionated low-dose ionizing radiation in the induction of EA.hy926 cell senescence
Yashi CAI ; Weixu HUANG ; Lingyu ZHANG ; Min ZHANG ; Huixian LI ; Changyong WEN ; Zhini HE ; Jianming ZOU ; Huifeng CHEN
Chinese Journal of Radiological Health 2024;33(1):13-20
Objective To investigate the mechanism of fractionated low-dose ionizing radiation (LDIR) in the induction of EA.hy926 cell senescence. Methods EA.hy926 cells were irradiated with X-ray at 0, 50, 100, and 200 mGy × 4, respectively, and cultured for 24, 48, and 72 h. Several indicators were measured, including the levels of cellular senescence-associated β-galactosidase (SA-β-gal) staining, mRNA levels of senescence-associated cell cycle protein-dependent kinase inhibitor genes CDKN1A and CDKN2A, reactive oxygen species (ROS), total antioxidant capacity (T-AOC), and phosphorylated H2A histone family member X (γ-H2AX). Results After 4 fractionated LDIR, compared with the control group, the treatment groups showed increased nucleus area, blurred cell edge, and increased SA-β-gal positive area (P < 0.05) at 24, 48 and 72 h. After 4 fractionated LDIR, the mRNA level of CDKN1A increased in the 100 and 200 mGy × 4 groups at 24 and 48 h (P < 0.05), and CDKN2A mRNA level increased in the 100 and 200 mGy × 4 groups at 48 and 72 h (P < 0.05). The fluorescence intensity of ROS increased in treatment groups at 24, 48, and 72 h after 4 fractionated LDIR (P < 0.05). After 4 fractionated LDIR, the T-AOC level increased in the 100 and 200 mGy × 4 groups at 24 h (P < 0.05), and T-AOC level increased in all treatment groups at 48 and 72 h (P < 0.05). After 4 fractionated LDIR, γ-H2AX fluorescence intensity increased in all treatment groups at 24 h (P < 0.05), and the fluorescence intensity increased in the 100 and 200 mGy × 4 groups at 48 and 72 h (P < 0.05). Conclusion Fractionated LDIR can induce cellular senescence in EA.hy926 cells by impacting the cellular oxidation-antioxidation and oxidative damage levels, and the effects were relatively evident at 100 and 200 mGy.
3.Effects of bisphenol A exposure at different circadian time on hepatic lipid metabolism in mice
Yan ZHANG ; Min WANG ; Mengya ZHOU ; Zhitian LU ; Xudong LI ; Huihong ZHANG ; Fan WU ; Runxuan ZHUANG ; Zhini HE ; Wenxue LI ; Guangyu YANG ; Wei ZHU ; Bo ZHANG
Journal of Environmental and Occupational Medicine 2022;39(12):1336-1342
Background Lipid metabolism in liver shows circadian-dependent profiles. The hepatotoxicity of environmental chemicals is dependent on circadian time. Objective To observe the effects of bisphenol A (BPA) exposure at different zeitgeber time (ZT) on hepatic and blood lipid metabolism and decipher the underlying mechanisms related to circadian rhythm in mice. Methods Thirty-five female C57BL/6J mice were sacrificed every 4 h in a light-dark cycle (12 h/12 h). The liver tissues were collected to describe the circadian profiles of hepatic Rev-erba, Bmal1, Clock, Srebp1c, and Chrebp mRNA expression levels within 24 h. Thirty female mice were divided into 6 groups by the timing (ZT3 represents the 3 h after light on, ZT15 represents the 3 h after light off) and dose (50 or 500 μg·kg−1·d−1) of BPA exposure to observe hepatotoxicity. Mice were gavaged with designed doses of BPA once per day for 4 weeks. Mice were maintained with ad libitum access to food and water and measured body weight weekly. After the experiment, mice were euthanatized and liver tissues were separated to determine the biochemical indicators of lipid metabolism and lipid metabolism- and circadian-related gene mRNA expressions. Results Hepatic Rev-erba, Bmal1, Clock, Srebp1c, and Chrebp mRNA expression levels were rhythmic during a 24 h period in mice. At ZT3 and ZT15, BPA did not alter body weight, plasma glucose, plasma total cholesterol, plasma low density lipoprotein cholesterol, and plasma triglycerides (P>0.05). The plasma high density lipoprotein cholesterol decreased in the 50 μg·kg−1·d−1 BPA group at ZT3 by 14.56% compared with the control group (P<0.05). The liver triglycerides increased in the 50 μg·kg−1·d−1 BPA group at ZT15 by 115.20% compared with the control group (P<0.05). BPA decreased Srebp1c mRNA expression level when dosing at ZT3 and increased Chrebp, Srebp1c, and Acc1 mRNA expression levels when dosing at ZT15 compared with the control group (P<0.05). BPA increased Bmal1 mRNA expression level and decreased Rev-erbα mRNA expression level at ZT3 exposure and decreased Bmal1 and increased Rev-erbα mRNA expression level at ZT15 exposure (P<0.05). Conclusion BPA exposure at light or dark period has different effects on hepatic lipid metabolism in mice. Hepatic lipid deposit appears when BPA is dosed at dark period. Rev-erbα-Bmal1 regulation circuits and the subsequent upregulation of Srebp1c and Chrebp and the target gene Acc1 may be involved.