1.Aging affects on the response irregularity of cells in different visual areas of cats.
Baozhuo ZHOU ; Zhimo YAO ; Zhen LIANG ; Zhengchun WANG ; Nini YUAN ; Zhiguo LIU ; Yifeng ZHOU
Journal of Biomedical Engineering 2013;30(2):229-233
In this research, we compared the visual neuron responses for LGN, A18 and PMLS of old and young cats with extracellular single-neuron recording techniques. We used firing rate vector to characterize information, and response irregularity of cells to evaluate the degeneration of visual characters. Response irregularity is characterized by means of the two coefficients of variation of firing rate vectors: Cv and Cv2. We found that there was no significant change of the response irregularity in LGN areas during the aging process from young to old cats. But in the other two areas, neurons of old cats exhibited significantly larger response irregularity than those of young cats. The result indicated that the information processing function of advanced visual cortex was impaired by aging. This result also provids a reference for the research of the other neuronal system changes during aging process.
Action Potentials
;
physiology
;
Aging
;
physiology
;
Animals
;
Cats
;
Neural Conduction
;
Neurons
;
physiology
;
Visual Cortex
;
physiology
2.Entrainment of Astrocytic and Neuronal Ca2+ Population Dynamics During Information Processing of Working Memory in Mice.
Zhu LIN ; Feng YOU ; Ting LI ; Yijia FENG ; Xinyue ZHAO ; Jingjing YANG ; Zhimo YAO ; Ying GAO ; Jiang-Fan CHEN
Neuroscience Bulletin 2022;38(5):474-488
Astrocytes are increasingly recognized to play an active role in learning and memory, but whether neural inputs can trigger event-specific astrocytic Ca2+ dynamics in real time to participate in working memory remains unclear due to the difficulties in directly monitoring astrocytic Ca2+ dynamics in animals performing tasks. Here, using fiber photometry, we showed that population astrocytic Ca2+ dynamics in the hippocampus were gated by sensory inputs (centered at the turning point of the T-maze) and modified by the reward delivery during the encoding and retrieval phases. Notably, there was a strong inter-locked and antagonistic relationship between the astrocytic and neuronal Ca2+ dynamics with a 3-s phase difference. Furthermore, there was a robust synchronization of astrocytic Ca2+ at the population level among the hippocampus, medial prefrontal cortex, and striatum. The inter-locked, bidirectional communication between astrocytes and neurons at the population level may contribute to the modulation of information processing in working memory.
Animals
;
Astrocytes
;
Hippocampus/physiology*
;
Humans
;
Memory, Short-Term/physiology*
;
Mice
;
Neurons/physiology*
;
Population Dynamics